Informatik
Refine
Document Type
- Conference Proceeding (46)
- Part of a Book (12)
- Article (8)
- Book (6)
- Doctoral Thesis (6)
- Anthology (6)
- Patent (2)
- Working Paper (1)
Has Fulltext
- no (87) (remove)
Urban platforms are essential for smart and sustainable city planning and operation. Today they are mostly designed to handle and connect large urban data sets from very different domains. Modelling and optimisation functionalities are usually not part of the cities software infrastructure. However, they are considered crucial for transformation scenario development and optimised smart city operation. The work discusses software architecture concepts for such urban platforms and presents case study results on the building sector modelling, including urban data analysis and visualisation. Results from a case study in New York are presented to demonstrate the implementation status.
Due to digitalization, constant technological progress and ever shorter product life cycles, enterprises are currently facing major challenges. In order to succeed in the market, business models have to be adapted more often and more quickly to changing market conditions than they used to be. Fast adaptability, also called agility, is a decisive competitive factor in today’s world. Because of the ever-growing IT part of products and the fact that they are manufactured using IT, changing the business model has a major impact on the enterprise architecture (EA). However, developing EAs is a very complex task, because many stakeholders with conflicting interests are involved in the decision-making process. Therefore, a lot of collaboration is required. To support organizations in developing their EA, this article introduces a novel integrative method that systematically integrates stakeholder interests into decision-making activities. By using the method, collaboration between stakeholders involved is improved by identifying points of contact between them. Furthermore, standardized activities make decision-making more transparent and comparable without limiting creativity.
Enterprises are currently transforming their strategy, processes, and their information systems to extend their degree of digitalization. The potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, artificial intelligence, big data with analytics, mobile systems, collaboration networks, and cyber physical systems both drives and enables new business designs. Digitalization deeply disrupts existing businesses, technologies and economies and fosters the architecture of digital environments with many rather small and distributed structures. This has a strong impact for new value producing opportunities and architecting digital services and products guiding their design through exploiting a Service-Dominant Logic. The main result of the book chapter extends methods for integral digital strategies with value-oriented models for digital products and services which are defined in the framework of a multi-perspective digital enterprise architecture reference model.
The digital transformation is today’s dominant business transformation having a strong influence on how digital services and products are designed in a service-dominant way. A popular underlying theory of value creation and economic exchange that is known as the service-dominant (S-D) logic can be connected to many successful digital business models. However, S-D logic by itself is abstract. Companies cannot directly use it as an instrument for business model innovation and design in an easy way. To address this a comprehensive ideation method based on S-D logic is proposed, called service-dominant design (SDD). SDD is aimed at supporting firms in the transition to a service- and value-oriented perspective. The method provides a simplified way to structure the ideation process based on four model components. Each component consists of practical implications, auxiliary questions and visualization techniques that were derived from a literature review, a use case evaluation of digital mobility and a focus group discussion. SDD represents a first step of having a toolset that can support established companies in the process of service- and value-orientation as part of their digital transformation efforts.
This research-oriented book presents key contributions on architecting the digital transformation. It includes the following main sections covering 20 chapters: · Digital Transformation · Digital Business · Digital Architecture · Decision Support · Digital Applications Focusing on digital architectures for smart digital products and services, it is a valuable resource for researchers, doctoral students, postgraduates, graduates, undergraduates, academics and practitioners interested in digital transformation.
Die Erfindung betrifft ein Verfahren zur extrinsischen Kalibrierung wenigstens eines bildgebenden Sensors, wonach eine Pose des wenigstens einen bildgebenden Sensors relativ zu dem Ursprung (U) eines dreidimensionalen Koordinatensystems einer Handhabungseinrichtung mittels einer Recheneinrichtung bestimmt wird, wobei bekannte dreidimensionale Koordinaten betreffend die Position wenigstens eines Gelenks der Handhabungseinrichtung durch die Recheneinrichtung berücksichtigt werden, und wobei zweidimensionale Koordinaten betreffend die Position des wenigstens einen Gelenks anhand von Rohdaten des wenigstens einen bildgebenden Sensors ermittelt werden, und wobei die Recheneinrichtung die Pose des wenigstens einen bildgebenden Sensors anhand der Korrespondenz zwischen den zweidimensionalen Koordinaten und den dreidimensionalen Koordinaten bestimmt.
Internet of Things (IoT) provides a strong platform for computer users to connect objects, devices, and people to the Internet for exchanging or sharing of information with each other. IoT is growing rapidly and is expected to adapt to disciplines such as manufacturing, agriculture, healthcare, and robotics. Furthermore, the new concept of IoT is proposed and shown, especially for robotics areas as Internet of Robotics Things (IoRT). IoRT is a mixed structure of diverse technologies such as cloud computing, artificial intelligence, and machine learning. However, to promote and realize IoRT, digitization and digital transformation should be proceeded and implemented in the robotics enterprise. In this paper, we propose and architecture framework for IoRT-based digital platforms an verify it using a planned case in a global robotics enterprise. The associated challenges and future research directions in this field are also presented.
On the design of an urban data and modeling platform and its application to urban district analyses
(2020)
An integrated urban platform is the essential software infrastructure for smart, sustainable and resilitent city planning, operation and maintenance. Today such platforms are mostly designed to handle and analyze large and heterogeneous urban data sets from very different domains. Modeling and optimization functionalities are usually not part of the software concepts. However, such functionalities are considered crucial by the authors to develop transformation scenarios and to optimized smart city operation. An urban platform needs to handle multiple scales in the time and spatial domain, ranging from long term population and land use change to hourly or sub-hourly matching of renewable energy supply and urban energy demand.
Automatic classification of rotating machinery defects using Machine Learning (ML) algorithms
(2020)
Electric machines and motors have been the subject of enormous development. New concepts in design and control allow expanding their applications in different fields. The vast amount of data have been collected almost in any domain of interest. They can be static; that is to say, they represent real-world processes at a fixed point of time. Vibration analysis and vibration monitoring, including how to detect and monitor anomalies in vibration data are widely used techniques for predictive maintenance in high-speed rotating machines. However, accurately identifying the presence of a bearing fault can be challenging in practice, especially when the failure is still at its incipient stage, and the signal-to-noise ratio of the monitored signal is small. The main objective of this work is to design a system that will analyze the vibration signals of a rotating machine, based on recorded data from sensors, in the time/frequency domain. As a consequence of such substantial interest, there has been a dramatic increase of interest in applying Machine Learning (ML) algorithms to this task. An ML system will be used to classify and detect abnormal behavior and recognize the different levels of machine operation modes. The proposed solution can be deployed as predictive maintenance for Industry 4.0.
Power line communications (PLC) reuse the existing power-grid infrastructure for the transmission of data signals. As power line the communication technology does not require a dedicated network setup, it can be used to connect a multitude of sensors and Internet of Things (IoT) devices. Those IoT devices could be deployed in homes, streets, or industrial environments for sensing and to control related applications. The key challenge faced by future IoT-oriented narrowband PLC networks is to provide a high quality of service (QoS). In fact, the power line channel has been traditionally considered too hostile. Combined with the fact that spectrum is a scarce resource and interference from other users, this requirement calls for means to increase spectral efficiency radically and to improve link reliability. However, the research activities carried out in the last decade have shown that it is a suitable technology for a large number of applications. Motivated by the relevant impact of PLC on IoT, this paper proposed a cooperative spectrum allocation in IoT-oriented narrowband PLC networks using an iterative water-filling algorithm.