Informatik
Refine
Document Type
- Conference proceeding (67)
- Journal article (44)
- Book chapter (12)
Is part of the Bibliography
- yes (123)
Institute
- Informatik (123)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (28)
- IEEE (13)
- Università Politecnica delle Marche (13)
- Hochschule Reutlingen (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
Sleep is essential to physical and mental health. However, the traditional approach to sleep analysis—polysomnography (PSG)—is intrusive and expensive. Therefore, there is great interest in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and technologies that can reliably and accurately measure cardiorespiratory parameters with minimal impact on the patient. This has led to the development of other relevant approaches, which are characterised, for example, by the fact that they allow greater freedom of movement and do not require direct contact with the body, i.e., they are non-contact. This systematic review discusses the relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and types of sensors used, and the possible physiological parameters available for analysis. To do this, we conducted a literature review and summarised current research on the use of non-contact technologies for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria for the selection of publications were established prior to the start of the search. Publications were assessed using one main question and several specific questions. We obtained 3774 unique articles from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked them for relevance, resulting in 54 articles that were analysed in a structured way using terminology. The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion sensors, cameras) that can be installed in hospital wards and departments or in the environment. The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among the characteristics examined to investigate the overall effectiveness of the systems and technologies considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the considered systems and technologies were identified by answering the identified research questions. The results obtained allow us to determine the current trends and the vector of development of medical technologies in sleep medicine for future researchers and research.
Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being. Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters while causing minimal discomfort to the user’s sleep. We developed a low-cost Out of Center Sleep Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate, respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and 2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and verified the reliability and applicability of the system. It showed a minor dependency on sleeping positions, one of the major cumbersome sleep measurements. We identified the sensor under the thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising results, further investigation is required with the bandwidth frequency and validation of the system with larger groups of subjects, including patients.
Identifikation von Schlaf- und Wachzuständen durch die Auswertung von Atem- und Bewegungssignalen
(2021)
The respiratory rate is a vital sign indicating breathing illness. It is necessary to analyze the mechanical oscillations of the patient's body arising from chest movements. An inappropriate holder on which the sensor is mounted, or an inappropriate sensor position is some of the external factors which should be minimized during signal registration. This paper considers using a non-invasive device placed under the bed mattress and evaluates the respiratory rate. The aim of the work is the development of an accelerometer sensor holder for this system. The normal and deep breathing signals were analyzed, corresponding to the relaxed state and when taking deep breaths. The evaluation criterion for the holder's model is its influence on the patient's respiratory signal amplitude for each state. As a result, we offer a non-invasive system of respiratory rate detection, including the mechanical component providing the most accurate values of mentioned respiratory rate.
The use of deep learning models with medical data is becoming more widespread. However, although numerous models have shown high accuracy in medical-related tasks, such as medical image recognition (e.g. radiographs), there are still many problems with seeing these models operating in a real healthcare environment. This article presents a series of basic requirements that must be taken into account when developing deep learning models for biomedical time series classification tasks, with the aim of facilitating the subsequent production of the models in healthcare. These requirements range from the correct collection of data, to the existing techniques for a correct explanation of the results obtained by the models. This is due to the fact that one of the main reasons why the use of deep learning models is not more widespread in healthcare settings is their lack of clarity when it comes to explaining decision making.
Nowadays, the importance of early active patient mobilization in the recovery and rehabilitation phase has increased significantly. One way to involve patients in the treatment is a gamification-like approach, which is one of the methods of motivation in various life processes. This article shows a system prototype for patients who require physical activity because of active early mobilization after medical interventions or during illness. Bedridden patients and people with a sedentary lifestyle (predominantly lying in bed) are also potential users. The main idea for the concept was non-contact system implementation for the patients making them feel effortless during its usage. The system consists of three related parts: hardware, software, and game application. To test the relevance and coherence of the system, it was used by 35 people. The participants were asked to play a video game requiring them to make body movements while lying down. Then they were asked to take part in a small survey to evaluate the system's usability. As a result, we offer a prototype consisting of hardware and software parts that can increase and diversify physical activity during active early mobilization of patients and prevent the occurrence of possible health problems due to predominantly low activity. The proposed design can be possibly implemented in hospitals, rehabilitation centers, and even at home.
Healthy sleep is required for sufficient restoration of the human body and brain. Therefore, in the case of sleep disorders, appropriate therapy should be applied timely, which requires a prompt diagnosis. Traditionally, a sleep diary is a part of diagnosis and therapy monitoring for some sleep disorders, such as cognitive behaviour therapy for insomnia. To automatise sleep monitoring and make it more comfortable for users, substituting a sleep diary with a smartwatch measurement could be considered. With the aim of providing accurate results, a study with a total of 30 night recordings was conducted. Objective sleep measurement with a Samsung Galaxy Watch 4 was compared with a subjective approach (sleep diary), evaluating the four relevant sleep characteristics: time of getting asleep, wake up time, sleep efficiency (SE), and total sleep time (TST). The performed analysis has demonstrated that the median difference between both measurement approaches was equal to 7 and 3 minutes for a time of getting asleep and wake up time correspondingly, which allows substituting a subjective measurement with a smartwatch. The SE was determined with a median difference between the two measurement methods of 5.22%. This result also implicates a possibility of substitution. Some single recordings have indicated a higher variance between the two approaches. Therefore, the conclusion can be made that a substitution provides reliable results primarily in the case of long-term monitoring. The results of the evaluation of the TST measurement do not allow to recommend substitution of the measurement method.
Home health applications have evolved over the last few decades. Assistive systems such as a data platform in connection with health devices can allow for health-related data to be automatically transmitted to a database. However, there remain significant challenges concerning intermodular communication. Central among them is the challenge of achieving interoperability, the ability of devices to communicate and share data with each other. A major goal of this project was to extend an existing data platform (COMES®) and establish working interoperability by connecting assistive devices with differing approaches. We describe this process for a sleep monitoring and a physical exercise device. Furthermore, we aimed to test this setup and the implementation with a data platform in both a laboratory and an in-home setting with 11 elderly participants. The platform modification was realized, and the relevant changes were made so that the incoming data could be processed by the data platform, as well as visually displayed in real-time. Data was recorded by the respective device and transmitted into the data server with minor disruptions. Our observations affirmed that difficulties and data loss are far more likely to occur with increasing technical complexity, in the event of instable internet connection, or when the device setup requires (elderly) subjects to take specific steps for proper functioning. We emphasize the importance for tests and evaluations of home health technologies in real-life circumstances.
The purpose of this paper is to examine the effects of perceived stress on traffic and road safety. One of the leading causes of stress among drivers is the feeling of having a lack of control during the driving process. Stress can result in more traffic accidents, an increase in driver errors, and an increase in traffic violations. To study this phenomenon, the Stress Perceived Questionnaire (PSQ) was used to evaluate the perceived stress while driving in a simulation. The study was conducted with participants from Germany, and they were grouped into different categories based on their emotional stability. Each participant was monitored using wearable devices that measured their instantaneous heart rate (HR). The preference for wearable devices was due to their non-intrusive and portable nature. The results of this study provide an overview of how stress can affect traffic and road safety, which can be used for future research or to implement strategies to reduce road accidents and promote traffic safety.
Generating synthetic data is a relevant point in the machine learning community. As accessible data is limited, the generation of synthetic data is a significant point in protecting patients' privacy and having more possibilities to train a model for classification or other machine learning tasks. In this work, some generative adversarial networks (GAN) variants are discussed, and an overview is given of how generative adversarial networks can be used for data generation in different fields. In addition, some common problems of the GANs and possibilities to avoid them are shown. Different evaluation methods of the generated data are also described.