Informatik
Refine
Document Type
- Conference proceeding (67)
- Journal article (44)
- Book chapter (12)
Is part of the Bibliography
- yes (123)
Institute
- Informatik (123)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (28)
- IEEE (13)
- Università Politecnica delle Marche (13)
- Hochschule Reutlingen (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
In many cases continuous monitoring of vital signals is required and low intrusiveness is an important requirement. Incorporating monitoring systems in the hospital or home bed could have benefits for patients and caregivers. The objective of this work is the definition of a measurement protocol and the creation of a data set of measurements using commercial and low-cost prototypes devices to estimate heart rate and breathing rate. The experimental data will be used to compare results achieved by the devices and to develop algorithms for feature extraction of vital signals.
There have been substantial research efforts for algorithms to improve continuous and automated assessment of various health-related questions in recent years. This paper addresses the deployment gap between those improving algorithms and their usability in care and mobile health applications. In practice, most algorithms require significant and founded technical knowledge to be deployed at home or support healthcare professionals. Therefore, the digital participation of persons in need of health care professionals lacks a usable interface to use the current technological advances. In this paper, we propose applying algorithms taken from research as web-based microservices following the common approach of a RESTful service to bridge the gap and make algorithms accessible to caregivers and patients without technical knowledge and extended hardware capabilities. We address implementation details, interpretation and realization of guidelines, and privacy concerns using our self-implemented example. Also, we address further usability guidelines and our approach to those.
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
Deep learning-based EEG detection of mental alertness states from drivers under ethical aspects
(2021)
One of the most critical factors for a successful road trip is a high degree of alertness while driving. Even a split second of inattention or sleepiness in a crucial moment, will make the difference between life and death. Several prestigious car manufacturers are currently pursuing the aim of automated drowsiness identification to resolve this problem. The path between neuro-scientific research in connection with artificial intelligence and the preservation of the dignity of human individual’s and its inviolability, is very narrow. The key contribution of this work is a system of data analysis for EEGs during a driving session, which draws on previous studies analyzing heart rate (ECG), brain waves (EEG), and eye function (EOG). The gathered data is hereby treated as sensitive as possible, taking ethical regulations into consideration. Obtaining evaluable signs of evolving exhaustion includes techniques that obtain sleeping stage frequencies, problematic are hereby the correlated interference’s in the signal. This research focuses on a processing chain for EEG band splitting that involves band-pass filtering, principal component analysis (PCA), independent component analysis (ICA) with automatic artefact severance, and fast fourier transformation (FFT). The classification is based on a step-by-step adaptive deep learning analysis that detects theta rhythms as a drowsiness predictor in the pre-processed data. It was possible to obtain an offline detection rate of 89% and an online detection rate of 73%. The method is linked to the simulated driving scenario for which it was developed. This leaves space for more optimization on laboratory methods and data collection during wakefulness-dependent operations.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen’s κ and accuracy. The detection performance could be improved for three classes of sleep stages (Wake, REM, Non-REM sleep), four classes (Wake, Non-REM-Light sleep, Non-REM Deep sleep, REM sleep), and five classes (Wake, N1, N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51, and 0.28 to 0.44 respectively by stacking features before and after the epoch to be classified. Further analysis was done for the optimal length and combination method for this stacking approach. Overall, three methods and a variable duration between 30 s and 30 min have been analyzed. Overnight recordings of 36 healthy subjects from the Interdisciplinary Center for Sleep Medicine at Charité-Universitätsmedizin Berlin and Leave-One-Out-Cross-Validation on a patient-level have been used to validate the method.
Sustainable technologies are being increasingly used in various areas of human life. While they have a multitude of benefits, they are especially useful in health monitoring, especially for certain groups of people, such as the elderly. However, there are still several issues that need to be addressed before its use becomes widespread. This work aims to clarify the aspects that are of great importance for increasing the acceptance of the use of this type of technology in the elderly. In addition, we aim to clarify whether the technologies that are already available are able to ensure acceptable accuracy and whether they could replace some of the manual approaches that are currently being used. A two-week study with people 65 years of age and over was conducted to address the questions posed here, and the results were evaluated. It was demonstrated that simplicity of use and automatic functioning play a crucial role. It was also concluded that technology cannot yet completely replace traditional methods such as questionnaires in some areas. Although the technologies that were tested were classified as being “easy to use”, the elderly population in the current study indicated that they were not sure that they would use these technologies regularly in the long term because the added value is not always clear, among other issues. Therefore, awareness-raising must take place in parallel with the development of technologies and services.
Introduction
Despite its high accuracy, polysomnography (PSG) has several drawbacks for diagnosing obstructive sleep apnea (OSA). Consequently, multiple portable monitors (PMs) have been proposed.
Objective
This systematic review aims to investigate the current literature to analyze the sets of physiological parameters captured by a PM to select the minimum number of such physiological signals while maintaining accurate results in OSA detection.
Methods
Inclusion and exclusion criteria for the selection of publications were established prior to the search. The evaluation of the publications was made based on one central question and several specific questions.
Results
The abilities to detect hypopneas, sleep time, or awakenings were some of the features studied to investigate the full functionality of the PMs to select the most relevant set of physiological signals. Based on the physiological parameters collected (one to six), the PMs were classified into sets according to the level of evidence. The advantages and the disadvantages of each possible set of signals were explained by answering the research questions proposed in the methods.
Conclusions
The minimum number of physiological signals detected by PMs for the detection of OSA depends mainly on the purpose and context of the sleep study. The set of three physiological signals showed the best results in the detection of OSA.
Health monitoring in a home environment can have broader use since it may provide continuous control of health parameters with relatively minor intrusiveness into regular life. This work aims to verify if it is possible to replace the typical in some sleep medicine areas subjective questioning by an objective measurement using electronic devices. For this purpose, a study was conducted with ten subjects, in which objective and subjective measurement of relevant sleep parameters took place. The results of both measurement methods were evaluated and analyzed. The results showed that while for some measures, such as Total Time in Bed, there is a high agreement between objective and subjective measurements, for others, such as sleep quality, there are significant differences. For this reason, currently, a combination of both measurement methods may be beneficial and provide the most detailed results, while a partial replacement can already reduce the number of questions at the subjective measurement by measurement through electronic devices.
Respiratory diseases are leading causes of death and disability in the world. The recent COVID-19 pandemic is also affecting the respiratory system. Detecting and diagnosing respiratory diseases requires both medical professionals and the clinical environment. Most of the techniques used up to date were also invasive or expensive.
Some research groups are developing hardware devices and techniques to make possible a non-invasive or even remote respiratory sound acquisition. These sounds are then processed and analysed for clinical, scientific, or educational purposes.
We present the literature review of non-invasive sound acquisition devices and techniques.
The results are about a huge number of digital tools, like microphones, wearables, or Internet of Thing devices, that can be used in this scope.
Some interesting applications have been found. Some devices make easier the sound acquisition in a clinic environment, but others make possible daily monitoring outside that ambient. We aim to use some of these devices and include the non-invasive recorded respiratory sounds in a Digital Twin system for personalized health.