Informatik
Refine
Document Type
- Conference proceeding (62)
- Journal article (42)
- Book chapter (12)
Is part of the Bibliography
- yes (116)
Institute
- Informatik (116)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (23)
- Università Politecnica delle Marche (13)
- Hochschule Reutlingen (11)
- IEEE (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
Introduction
Despite its high accuracy, polysomnography (PSG) has several drawbacks for diagnosing obstructive sleep apnea (OSA). Consequently, multiple portable monitors (PMs) have been proposed.
Objective
This systematic review aims to investigate the current literature to analyze the sets of physiological parameters captured by a PM to select the minimum number of such physiological signals while maintaining accurate results in OSA detection.
Methods
Inclusion and exclusion criteria for the selection of publications were established prior to the search. The evaluation of the publications was made based on one central question and several specific questions.
Results
The abilities to detect hypopneas, sleep time, or awakenings were some of the features studied to investigate the full functionality of the PMs to select the most relevant set of physiological signals. Based on the physiological parameters collected (one to six), the PMs were classified into sets according to the level of evidence. The advantages and the disadvantages of each possible set of signals were explained by answering the research questions proposed in the methods.
Conclusions
The minimum number of physiological signals detected by PMs for the detection of OSA depends mainly on the purpose and context of the sleep study. The set of three physiological signals showed the best results in the detection of OSA.
Health monitoring in a home environment can have broader use since it may provide continuous control of health parameters with relatively minor intrusiveness into regular life. This work aims to verify if it is possible to replace the typical in some sleep medicine areas subjective questioning by an objective measurement using electronic devices. For this purpose, a study was conducted with ten subjects, in which objective and subjective measurement of relevant sleep parameters took place. The results of both measurement methods were evaluated and analyzed. The results showed that while for some measures, such as Total Time in Bed, there is a high agreement between objective and subjective measurements, for others, such as sleep quality, there are significant differences. For this reason, currently, a combination of both measurement methods may be beneficial and provide the most detailed results, while a partial replacement can already reduce the number of questions at the subjective measurement by measurement through electronic devices.
Respiratory diseases are leading causes of death and disability in the world. The recent COVID-19 pandemic is also affecting the respiratory system. Detecting and diagnosing respiratory diseases requires both medical professionals and the clinical environment. Most of the techniques used up to date were also invasive or expensive.
Some research groups are developing hardware devices and techniques to make possible a non-invasive or even remote respiratory sound acquisition. These sounds are then processed and analysed for clinical, scientific, or educational purposes.
We present the literature review of non-invasive sound acquisition devices and techniques.
The results are about a huge number of digital tools, like microphones, wearables, or Internet of Thing devices, that can be used in this scope.
Some interesting applications have been found. Some devices make easier the sound acquisition in a clinic environment, but others make possible daily monitoring outside that ambient. We aim to use some of these devices and include the non-invasive recorded respiratory sounds in a Digital Twin system for personalized health.
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.
Background: One of the most promising health care development areas is introducing telemedicine services and creating solutions based on blockchain technology. The study of systems combining both these domains indicates the ongoing expansion of digital technologies in this market segment.
Objective: This paper aims to review the feasibility of blockchain technology for telemedicine.
Methods: The authors identified relevant studies via systematic searches of databases including PubMed, Scopus, Web of Science, IEEE Xplore, and Google Scholar. The suitability of each for inclusion in this review was assessed independently. Owing to the lack of publications, available blockchain-based tokens were discovered via conventional web search engines (Google, Yahoo, and Yandex).
Results: Of the 40 discovered projects, only 18 met the selection criteria. The 5 most prevalent features of the available solutions (N=18) were medical data access (14/18, 78%), medical service processing (14/18, 78%), diagnostic support (10/18, 56%), payment transactions (10/18, 56%), and fundraising for telemedical instrument development (5/18, 28%).
Conclusions: These different features (eg, medical data access, medical service processing, epidemiology reporting, diagnostic support, and treatment support) allow us to discuss the possibilities for integration of blockchain technology into telemedicine and health care on different levels. In this area, a wide range of tasks can be identified that could be accomplished based on digital technologies using blockchains.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The present work proposes the use of modern ICT technologies such as smartphones, NFCs, internet, and web technologies, to help patients in carrying out their therapies. The implemented system provides a calendar with a reminder of the assumptions, ensures the drug identification through NFC, allows remote assistance from healthcare staff and family members to check and manage the therapy in real-time. The system also provides centralized information on the patient's therapeutic situation, helpful in choosing new compatible therapies.
Background
The actual task of electrocardiographic examinations is to increase the reliability of diagnosing the condition of the heart. Within the framework of this task, an important direction is the solution of the inverse problem of electrocardiography, based on the processing of electrocardiographic signals of multichannel cardio leads at known electrode coordinates in these leads (Titomir et al. Noninvasiv electrocardiotopography, 2003), (Macfarlane et al. Comprehensive Electrocardiology, 2nd ed. (Chapter 9), 2011).
Results
In order to obtain more detailed information about the electrical activity of the heart, we carry out a reconstruction of the distribution of equivalent electrical sources on the heart surface. In this area, we hold reconstruction of the equivalent sources during the cardiac cycle at relatively low hardware cost. ECG maps of electrical potentials on the surface of the torso (TSPM) and electrical sources on the surface of the heart (HSSM) were studied for different times of the cardiac cycle. We carried out a visual and quantitative comparison of these maps in the presence of pathological regions of different localization. For this purpose we used the model of the heart electrical activity, based on cellular automata.
Conclusions
The model of cellular automata allows us to consider the processes of heart excitation in the presence of pathological regions of various sizes and localization. It is shown, that changes in the distribution of electrical sources on the surface of the epicardium in the presence of pathological areas with disturbances in the conduction of heart excitation are much more noticeable than changes in ECG maps on the torso surface.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.