500 Naturwissenschaften
Refine
Year of publication
- 2022 (4)
Document Type
- Journal article (4)
Language
- English (4)
Is part of the Bibliography
- yes (4)
Institute
- Technik (2)
- Informatik (1)
- Life Sciences (1)
Publisher
- ASME (2)
- EDP Sciences (1)
- Macmillan Publishers Limited (1)
Uncontrolled movement of instruments in laparoscopic surgery can lead to inadvertent tissue damage, particularly when the dissecting or electrosurgical instrument is located outside the field of view of the laparoscopic camera. The incidence and relevance of such events are currently unknown. The present work aims to identify and quantify potentially dangerous situations using the example of laparoscopic cholecystectomy (LC). Twenty-four final year medical students were prompted to each perform four consecutive LC attempts on a well-established box trainer in a surgical training environment following a standardized protocol in a porcine model. The following situation was defined as a critical event (CE): the dissecting instrument was inadvertently located outside the laparoscopic camera’s field of view. Simultaneous activation of the electrosurgical unit was defined as a highly critical event (hCE). Primary endpoint was the incidence of CEs. While performing 96 LCs, 2895 CEs were observed. Of these, 1059 (36.6%) were hCEs. The median number of CEs per LC was 20.5 (range: 1–125; IQR: 33) and the median number of hCEs per LC was 8.0 (range: 0–54, IQR: 10). Mean total operation time was 34.7 min (range: 15.6–62.5 min, IQR: 14.3 min). Our study demonstrates the significance of CEs as a potential risk factor for collateral damage during LC. Further studies are needed to investigate the occurrence of CE in clinical practice, not just for laparoscopic cholecystectomy but also for other procedures. Systematic training of future surgeons as well as technical solutions address this safety issue.
Cell migration plays an essential role in wound healing and inflammatory processes inside the human body. Peripheral blood neutrophils, a type of polymorphonuclear leukocyte (PMN), are the first cells to be activated during inflammation and subsequently migrate toward an injured tissue or infection site. This response is dependent on both biochemical signaling and the extracellular environment, one aspect of which includes increased temperature in the tissues surrounding the inflammation site. In our study, we analyzed temperature-dependent neutrophil migration using differentiated HL-60 cells. The migration speed of differentiated HL-60 cells was found to correlate positively with temperature from 30 to 42 °C, with higher temperatures inducing a concomitant increase in cell detachment. The migration persistence time of differentiated HL-60 cells was higher at lower temperatures (30–33 °C), while the migration persistence length stayed constant throughout the temperature range. Coupled with the increased speed observed at high temperatures, this suggests that neutrophils are primed to migrate more effectively at the elevated temperatures characteristic of inflammation. Temperature gradients exist on both cell and tissue scales. Taking this into consideration, we also investigated the ability of differentiated HL-60 cells to sense and react to the presence of temperature gradients, a process known as thermotaxis. Using a two-dimensional temperature gradient chamber with a range of 27–43 °C, we observed a migration bias parallel to the gradient, resulting in both positive and negative thermotaxis. To better mimic the extracellular matrix (ECM) environment in vivo, a three-dimensional collagen temperature gradient chamber was constructed, allowing observation of biased neutrophil-like differentiated HL-60 migration toward the heat source.
The hearing contact lens® (HCL) is a new type of hearing aid devices. One of its main components is a piezo-electric actuator. In order to evaluate and maximize the HCL's performance, a model of the HCL coupled to a middle-ear model was developed using finite element approach. The model was validated step by step starting with the HCL only. To validate the HCL model, vibrational measurements on the HCL were performed using a laser-doppler-vibrometer (LDV). Then, a silicone cap was placed onto the HCL to provide an interface between the HCL and the tympanic membrane of the middle-ear model, and additional LDV measurements on temporal bones were performed to validate the coupled model that was used to evaluate the equivalent sound pressure of the HCL. Moreover, a de-eper insight was gained into the contact between the HCL and tympanic membrane and its effects on the HCL performance. The model can be used to investigate the sensitivity of geometrical and material parameters with respect to performance measures of the HCL and evaluate the feedback behavior.
Current clinical practice is often unable to identify the causes of conductive hearing loss in the middle ear with sufficient certainty without exploratory surgery. Besides the large uncertainties due to interindividual variances, only partially understood cause–effect principles are a major reason for the hesitant use of objective methods such as wideband tympanometry in diagnosis, despite their high sensitivity to pathological changes. For a better understanding of objective metrics of the middle ear, this study presents a model that can be used to reproduce characteristic changes in metrics of the middle ear by altering local physical model parameters linked to the anatomical causes of a pathology. A finite-element model is, therefore, fitted with an adaptive parameter identification algorithm to results of a temporal bone study with stepwise and systematically prepared pathologies. The fitted model is able to reproduce well the measured quantities reflectance, impedance, umbo and stapes transfer function for normal ears and ears with otosclerosis, malleus fixation, and disarticulation. In addition to a good representation of the characteristic influences of the pathologies in the measured quantities, a clear assignment of identified model parameters and pathologies consistent with previous studies is achieved. The identification results highlight the importance of the local stiffness and damping values in the middle ear for correct mapping of pathological characteristics and address the challenges of limited measurement data and wide parameter ranges from the literature. The great sensitivity of the model with respect to pathologies indicates a high potential for application in model-based diagnosis.