530 Physik
Refine
Document Type
- Journal article (32)
- Book (1)
- Book chapter (1)
- Conference proceeding (1)
Is part of the Bibliography
- yes (35)
Institute
- Life Sciences (22)
- Technik (9)
- Informatik (3)
- ESB Business School (1)
Publisher
- Elsevier (6)
- Springer (6)
- EMW (5)
- MDPI (3)
- De Gruyter (2)
- Optical Society of America (2)
- Wiley (2)
- American Chemical Society (1)
- DEGA (1)
- EDP Sciences (1)
Photoluminescence emission and Raman enhancement in TERS: an experimental and analytic revisiting
(2024)
An analytic model is used to calculate the Raman and fluorescence enhancement of a molecule in between two closely spaced gold nanospheres. Instead of using the conventional approach that only the dipolar plasmonic mode is considered, we calculate the electric field enhancement in the nanometre sized gap, by taking account of the higher order modes in one gold sphere, which couples to the dipolar mode of the other sphere. The experimental confirmation is performed by gap-dependent tip-enhanced Raman spectroscopy (TERS) measurements. The photoluminescence and Raman enhancement are both observed with different growing trends as the gap width decreases. Red-shift of the background spectra is observed and implies the increasing coupling between the nanospheres. This analytic model is shown to be able to interpret the enhancement mechanisms underlying gap-dependent TERS experimental results.
Based on a framework recently published, the double-Cornu spiral antenna is extended to an array to enhance the gain. The designed array of 2×2-elements is of low profile and small sizes, has however a large effective bandwidth, and shows overall good radiation characteristics: enhanced gain, large axial ratio bandwidth, and high degree of polarization purity. Except for a few deviations, which are due to manufacturing tolerances, artificial noise and measurement uncertainties on the one hand and diffracted waves at external edges on the other, simulated results and experimental data fit well together. In addition, EMC along with signal integrity issues related to the reduction of noise and unwanted radiation have been addressed. The proposed antenna is suitable for 5G applications and radar systems. With 14.02 dB realized gain, 6.2 GHz effective bandwidth and an uplink data rate of 3.44 Mbit/s, the array is promising for many mobility applications.
Comparative analysis of the chemical and rheological curing kinetics of formaldehyde-based wood adhesives is crucial for assessing their respective performance. Differential scanning calorimetry (DSC) and rheometry are the conventional techniques used for monitoring the curing processes leading to crosslinking polymerization of the adhesives. However, the direct comparison of these techniques is inappropriate due to the intrinsic differences in their underlying procedures. To address this challenge, the two adhesive samples were sequentially cured, firstly with rheometry and followed by DSC. The observed higher curing degree in the subsequent DSC procedure underpins the incomplete curing of the samples during initial rheometry. Furthermore, the comparative assessment of the activation energies, molar ratios, and active groups of the two adhesives highlights the importance of the pre-exponential factor in addition to the activation energies, as it attributes to the probability of active groups coinciding at the appropriate spatial arrangement.
Film formation of self synthesized Polymer EPM–g–VTMDS (ethylene–propylene rubber, EPM, grafted with vinyltetramethyldisiloxane, VTMDS) was studied regarding bonding to adhesion promoter vinyltrimethoxysilane (VTMS) on oxidized 18/10 chromium/nickel–steel (V2A) stainless steel surfaces. Polymer films of different mixed solutions including commercial siloxane and silicone, dimethyl, vinyl group terminated crosslinker (HANSA SFA 42100, CAS# 68083-19-2, 0.35 mmol Vinyl/g) and platinum, 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane complex Karstedt's catalyst (ALPA–KAT 1, CAS# 68478-92-2) were spin coated on V2A stainless steel surfaces with adsorbed VTMS thin layers in order to analyze film formation of EPM–g–VTMDS at early stages. Surface topography and chemical bonding of the high performance polymers on different oxidized V2A surfaces were investigated with X–ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM) and surface enhanced Raman spectroscopy (SERS). AFM and SEM as well as XPS results indicated that the formation of the polymer film proceeds via growth of polymer islands. Chemical signatures of the essential polymer contributions, linker and polymer backbones, could be identified using XPS core level peak shape analysis and also SERS. The appearance of signals which are related to Si–O–Si can be seen as a clear indication of lateral crosslinking and silica network formation in the films on the V2A surface.
Mesoporous silica microspheres (MPSMs) find broad application as separation materials in high liquid chromatography (HPLC). A promising preparation strategy uses p(GMA-co-EDMA) as hard templates to control the pore properties and a narrow size distribution of the MPMs. Here six hard templates were prepared which differ in their porosity and surface functionalization. This was achieved by altering the ratio of GMA to EDMA and by adjusting the proportion of monomer and porogen in the polymerization process. The various amounts of GMA incorporated into the polymer network of P1-6 lead to different numbers of tetraethylene pentamine in the p(GMA-co-EDMA) template. This was established by a partial least squares regression (PLS-R) model, based on FTIR spectra of the templates. Deposition of silica nanoparticles (SNP) into the template under Stoeber conditions and subsequent removal of the polymer by calcination result in MPSM1-6. The size of the SNPs and their incorporation depends on the pore parameters of the template and degree of TEPA functionalization. Moreover, the incorporated SNPs construct the silica network and control the pore parameters of the MPSMs. Functionalization of the MPSMs with trimethoxy (octadecyl) silane allows their use as a stationary phase for the separation of biomolecules. The pore characteristics and the functionalization of the template determine the pore structure of the silica particles and, consequently, their separation properties.
While driving, stress is caused by situations in which the driver estimates their ability to manage the driving demands as insufficient or loses the capability to handle the situation. This leads to increased numbers of driver mistakes and traffic violations. Additional stressing factors are time pressure, road conditions, or dislike for driving. Therefore, stress affects driver and road safety. Stress is classified into two categories depending on its duration and the effects on the body and psyche: short-term eustress and constantly present distress, which causes degenerative effects. In this work, we focus on distress. Wearable sensors are handy tools for collecting biosignals like heart rate, activity, etc. Easy installation and non-intrusive nature make them convenient for calculating stress. This study focuses on the investigation of stress and its implications. Specifically, the research conducts an analysis of stress within a select group of individuals from both Spain and Germany. The primary objective is to examine the influence of recognized psychological factors, including personality traits such as neuroticism, extroversion, psychoticism, stress and road safety. The estimation of stress levels was accomplished through the collection of physiological parameters (R-R intervals) using a Polar H10 chest strap. We observed that personality traits, such as extroversion, exhibited similar trends during relaxation, with an average heart rate 6% higher in Spain and 3% higher in Germany. However, while driving, introverts, on average, experienced more stress, with rates 4% and 1% lower than extroverts in Spain and Germany, respectively.
Analog integrated circuit sizing is notoriously difficult to automate due to its complexity and scale; thus, it continues to heavily rely on human expert knowledge. This work presents a machine learning-based design automation methodology comprising pre-defined building blocks such as current mirrors or differential pairs and pre-computed look-up tables for electrical characteristics of primitive devices. Modeling the behavior of primitive devices around the operating point with neural networks combines the speed of equation-based methods with the accuracy of simulation-based approaches and, thereby, brings quality of life improvements for analog circuit designers using the gm/Id method. Extending this procedural automation method for human design experts, we present a fully autonomous sizing approach. Related work shows that the convergence properties of conventional optimization approaches improve significantly when acting in the electrical domain instead of the geometrical domain. We, therefore, formulate the circuit sizing task as a sequential decision-making problem in the alternative electrical design space. Our automation approach is based entirely on reinforcement learning, whereby abstract agents learn efficient design space navigation through interaction and without expert guidance. These agents’ learning behavior and performance are evaluated on circuits of varying complexity and different technologies, showing both the feasibility and portability of the work presented here.
In this paper we presented the results of the workshop with the topic: Co-creation in citizen science (CS) for the development of climate adaptation measurements - Which success factors promote, and which barriers hinder a fruitful collaboration and co-creation process between scientists and volunteers? Under consideration of social, motivational, technical/technological and legal factors., which took place at the CitSci2022. We underlined the mentioned factors in the work with scientific literature. Our findings suggest that a clear communication strategy of goals and how citizen scientists can contribute to the project are important. In addition, they have to feel include and that the contribution makes a difference. To achieve this, it is critical to present the results to the citizen scientists. Also, the relationship between scientist and citizen scientists are essential to keep the citizen scientists engaged. Notification of meetings and events needs to be made well in advance and should be scheduled on the attendees' leisure time. The citizen scientists should be especially supported in technical questions. As a result, they feel appreciated and remain part of the project. For legal factors the current General Data Protection Regulation was considered important by the participants of the workshop. For the further research we try to address the individual points and first of all to improve our communication with the citizen scientist about the project goals and how they can contribute. In addition, we should better share the achieved results.
Ausbildung in der Akustik
(2022)
Die Wissenschaft der Akustik mit ihrer Vielfallt und Interdisziplinarität bietet hervorragende Möglichkeiten an beruflichen Betätigungsfeldern und hat viele von uns in ihren Bann gezogen. Ausbildung in der Akustik bedeutet mehr als Studierenden nur Wissen und Fähigkeiten zu vermitteln. Eigentlich ist nach dem Studium auch der Lernprozess nicht abgeschlossen, sondern wie viele Akustiker:innen meinen, fängt dieser erst dann richtig an. Um eine sehr gute Ausbildung zu gestalten, bedarf es neben Vorbildern an Personen auch Lehrformate, Methoden und Tools. Die folgenden sechs Kurzbeiträge sind Beispiele gelungener Maßnahmen in der Ausbildung der Akustik und sollen anregen, die Qualität in der Lehre stetig zu verbessern.
A new planar compact antenna composed of two crossed Cornu spirals is presented. Each Cornu spiral is fed from the center of the linearly part of the curvature between the two spirals, which builds the clothoid. Sequential rotation is applied using a sequential phase network to obtain circular polarization and increase the effective bandwidth. Signal integrity issues have been addressed and designed to ensure high quality of signal propagation. As a result, the antenna shows good radiation characteristics in the bandwidth of interest. Compared to antennas of the same size in the literature, it is broadband and of high gain. Although the proposed antenna has been designed for K- and Ka-band operations, it can also be developed for lower and upper frequencies because of the linearity of the Maxwell equations.