530 Physik
Refine
Document Type
- Journal article (25)
- Book (1)
- Book chapter (1)
- Conference proceeding (1)
Is part of the Bibliography
- yes (28)
Institute
- Life Sciences (18)
- Technik (7)
- Informatik (2)
- ESB Business School (1)
Publisher
- Springer (5)
- Elsevier (4)
- EMW (3)
- Optical Society of America (2)
- Wiley-VCH (2)
- ACS (1)
- DEGA (1)
- EDP Sciences (1)
- EMW Publishing (1)
- Hindawi (1)
In this paper we presented the results of the workshop with the topic: Co-creation in citizen science (CS) for the development of climate adaptation measurements - Which success factors promote, and which barriers hinder a fruitful collaboration and co-creation process between scientists and volunteers? Under consideration of social, motivational, technical/technological and legal factors., which took place at the CitSci2022. We underlined the mentioned factors in the work with scientific literature. Our findings suggest that a clear communication strategy of goals and how citizen scientists can contribute to the project are important. In addition, they have to feel include and that the contribution makes a difference. To achieve this, it is critical to present the results to the citizen scientists. Also, the relationship between scientist and citizen scientists are essential to keep the citizen scientists engaged. Notification of meetings and events needs to be made well in advance and should be scheduled on the attendees' leisure time. The citizen scientists should be especially supported in technical questions. As a result, they feel appreciated and remain part of the project. For legal factors the current General Data Protection Regulation was considered important by the participants of the workshop. For the further research we try to address the individual points and first of all to improve our communication with the citizen scientist about the project goals and how they can contribute. In addition, we should better share the achieved results.
Ausbildung in der Akustik
(2022)
Die Wissenschaft der Akustik mit ihrer Vielfallt und Interdisziplinarität bietet hervorragende Möglichkeiten an beruflichen Betätigungsfeldern und hat viele von uns in ihren Bann gezogen. Ausbildung in der Akustik bedeutet mehr als Studierenden nur Wissen und Fähigkeiten zu vermitteln. Eigentlich ist nach dem Studium auch der Lernprozess nicht abgeschlossen, sondern wie viele Akustiker:innen meinen, fängt dieser erst dann richtig an. Um eine sehr gute Ausbildung zu gestalten, bedarf es neben Vorbildern an Personen auch Lehrformate, Methoden und Tools. Die folgenden sechs Kurzbeiträge sind Beispiele gelungener Maßnahmen in der Ausbildung der Akustik und sollen anregen, die Qualität in der Lehre stetig zu verbessern.
A new planar compact antenna composed of two crossed Cornu spirals is presented. Each Cornu spiral is fed from the center of the linearly part of the curvature between the two spirals, which builds the clothoid. Sequential rotation is applied using a sequential phase network to obtain circular polarization and increase the effective bandwidth. Signal integrity issues have been addressed and designed to ensure high quality of signal propagation. As a result, the antenna shows good radiation characteristics in the bandwidth of interest. Compared to antennas of the same size in the literature, it is broadband and of high gain. Although the proposed antenna has been designed for K- and Ka-band operations, it can also be developed for lower and upper frequencies because of the linearity of the Maxwell equations.
The development of new materials that mimic cartilage and its function is an unmet need that will allow replacing the damaged parts of the joints, instead of the whole joint. Polyvinyl alcohol (PVA) hydrogels have raised special interest for this application due to their biocompatibility, high swelling capacity and chemical stability. In this work, the effect of post-processing treatments (annealing, high hydrostatic pressure (HHP) and gamma-radiation) on the performance of PVA gels obtained by cast-drying was investigated and, their ability to be used as delivery vehicles of the anti-inflammatories diclofenac or ketorolac was evaluated. HHP damaged the hydrogels, breaking some bonds in the polymeric matrix, and therefore led to poor mechanical and tribological properties. The remaining treatments, in general, improved the performance of the materials, increasing their crystallinity. Annealing at 150 °C generated the best mechanical and tribological results: higher resistance to compressive and tensile loads, lower friction coefficients and ability to support higher loads in sliding movement. This material was loaded with the anti-inflammatories, both without and with vitamin E (Vit.E) or Vit.E + cetalkonium chloride (CKC). Vit.E + CKC helped to control the release of the drugs which occurred in 24 h. The material did not induce irritability or cytotoxicity and, therefore, shows high potential to be used in cartilage replacement with a therapeutic effect in the immediate postoperative period.
A lens-based Raman spectrometer is characterized by studying the optical elements in the optical path and we study the measure of aberration–diffraction effects. This is achieved by measuring the spectral resolution (SR) thus encompassing almost all optical elements of a spectrometer that are mostly responsible for such effects. An equation for SR is used to determine the quality factor Q which measures aberration/diffraction effects occurring in a spectrometer. We show how the quality factor changes with different spectrometer parameters such as grating groove density, the wavelength of excitation, pinhole width, charge-coupled device (CCD) pixel density, etc. This work provides an insight into the quality of a spectrometer and helps to monitor the performance of the spectrometer over a certain period. Commercially available spectrometers or home-built spectrometers are prone to misalignment in optical elements and can benefit from this work that allows maintaining the overall quality of the setup. Performing such experiments over a period helps to minimize the aberration/ diffraction effects occurring as a result of time and maintaining the quality of measurements.
Hypericin has large potential in modern medicine and exhibits fascinating structural dynamics, such as multiple conformations and tautomerization. However, it is difficult to study individual conformers/tautomers, as they cannot be isolated due to the similarity of their chemical and physical properties. An approach to overcome this difficulty is to combine single molecule experiments with theoretical studies. Time-dependent density functional theory (TD-DFT) calculations reveal that tautomerization of hypericin occurs via a two-step proton transfer with an energy barrier of 1.63 eV, whereas a direct single-step pathway has a large activation energy barrier of 2.42 eV. Tautomerization in hypericin is accompanied by reorientation of the transition dipole moment, which can be directly observed by fluorescence intensity fluctuations. Quantitative tautomerization residence times can be obtained from the autocorrelation of the temporal emission behavior revealing that hypericin stays in the same tautomeric state for several seconds, which can be influenced by the embedding matrix. Furthermore, replacing hydrogen with deuterium further proves that the underlying process is based on tunneling of a proton. In addition, the tautomerization rate can be influenced by a λ/2 Fabry–Pérot microcavity, where the occupation of Raman active vibrations can alter the tunneling rate.
Sustainability is a development that meets the needs of the present without compromising the ability of future generations to meet their own needs.
Business Model is a plan for the successful operation of a business, identifying sources of revenue, the intended customer base, products, and details of financing.
Circular economy is an approach of how a company creates, captures and delivers value, with a value creation logic designed to improve resource efficiency through contributing to extending the useful life of products and parts (e.g., through long-life design, repair and remanufacturing) and closing material loops.
The isothermal curing of melamine resin is investigated by in-line infrared spectroscopy at different temperatures. The infrared spectra are decomposed into time courses of characteristic spectral patterns using Multivariate Curve Resolution (MCR). It was found that depending on the applied curing temperature, melamine films with different spectral fingerprints and correspondingly different chemical network structures are formed. The network structures of fully cured resin films are specific for the applied curing temperatures used and cannot simply be compensated by changes in the curing time. For industrial curing processes, this means that cure temperature is the main system determining factor at constant M:F ratio. However, different MF resin networks can be specifically obtained from one and the same melamine resin by suitable selection of the curing time and temperatures profiles to design resin functionality. The spectral fingerprints after short curing time as well as after long curing time reflect the fundamental differences in the thermoset networks that can be obtained with industrial short-cycle and multi-daylight presses.
Although spiral antennas have undergone continuous development and refinement since Edwin Turner conceived them in 1954, only a few compact planar arrays exist. The shortcoming is even more significant when it comes to spiral antenna arrays in mode M2 operation. The present work addresses this issue, among other things. It presents two planar arrays of spiral antennas operating in the same frequency band and radiating for the first one an axial mode M1 and a conical mode M2 for the second. Both arrays are modeled, simulated, and fed with a corporate feeding network embedded in a dielectric substrate. It is shown that keeping the same topology, the array for conical M1 mode can be obtained from the array for mode M2 by a simple introduction of a phase shift on one branch of the feed and vice versa, providing thus the possibility to obtain in the same structure a spiral antenna array operating in both modes in the same frequency band simultaneously. Comparison between simulated and measured data shows good agreement.
Characterization of brain tumours requires neuropathological expertise and is generally performed by histological evaluation and molecular analysis. One emerging technique to assist pathologists in future tumour diagnostics is multimodal optical spectroscopy. In the current clinical routine, tissue preprocessing with formalin is widely established and suitable for spectroscopic investigations since degradation processes impede the measurement of native tissue. However, formalin fixation results in alterations of the tissue chemistry and morphology for example by protein cross-linking. As optical spectroscopy is sensitive to these variations, we evaluate the effects of formalin fixation on multimodal brain tumour data in this proof-of-concept study. Nonfixed and formalin-fixed cross sections of different common human brain tumours were subjected to analysis of chemical variations using ultraviolet and Fourier-transform infrared microspectroscopy. Morphological changes were assessed by elastic light scattering microspectroscopy in the visible wavelength range. Data were analysed with multivariate data analysis and compared with histopathology. Tissue type classifications deduced by optical spectroscopy are highly comparable and independent from the preparation and the fixation protocol. However, formalin fixation leads to slightly better classification models due to improved stability of the tissue. As a consequence, spectroscopic methods represent an appropriate additional contrast for chemical and morphological information in neuropathological diagnosis and should be investigated to a greater extent. Furthermore, they can be included in the clinical workflow even after formalin fixation.