610 Medizin und Gesundheit
Refine
Document Type
- Journal article (2)
- Conference proceeding (2)
- Doctoral Thesis (1)
Is part of the Bibliography
- yes (5)
Institute
- Informatik (3)
- Life Sciences (1)
- Technik (1)
Publisher
- IEEE (2)
- De Gruyter (1)
- Elsevier (1)
- Shaker Verlag (1)
The respiratory rate is a vital sign indicating breathing illness. It is necessary to analyze the mechanical oscillations of the patient's body arising from chest movements. An inappropriate holder on which the sensor is mounted, or an inappropriate sensor position is some of the external factors which should be minimized during signal registration. This paper considers using a non-invasive device placed under the bed mattress and evaluates the respiratory rate. The aim of the work is the development of an accelerometer sensor holder for this system. The normal and deep breathing signals were analyzed, corresponding to the relaxed state and when taking deep breaths. The evaluation criterion for the holder's model is its influence on the patient's respiratory signal amplitude for each state. As a result, we offer a non-invasive system of respiratory rate detection, including the mechanical component providing the most accurate values of mentioned respiratory rate.
Comparative analysis of the R&D efficiency of 14 leading pharmaceutical companies for the years 1999–2018 shows that there is a close positive correlation between R&D spending and the two investigated R&D output parameters, approved NMEs and the cumulative impact factor of their publications. In other words, higher R&D investments (input) were associated with higher R&D output. Second, our analyses indicate that there are "economies of scale" (size) in pharmaceutical R&D.
Uncontrolled movements of laparoscopic instruments can lead to inadvertent injury of adjacent structures. The risk becomes evident when the dissecting instrument is located outside the field of view of the laparoscopic camera. Technical solutions to ensure patient safety are appreciated. The present work evaluated the feasibility of an automated binary classification of laparoscopic image data using Convolutional Neural Networks (CNN) to determine whether the dissecting instrument is located within the laparoscopic image section. A unique record of images was generated from six laparoscopic cholecystectomies in a surgical training environment to configure and train The CNN. By using a temporary version of the neural network, the annotation of the training image files could be automated and accelerated. A combination of oversampling and selective data augmentation was used to enlarge the fully labelled image data set and prevent loss of accuracy due to imbalanced class volumes. Subsequently the same approach was applied to the comprehensive, fully annotated Cholec80 database. The described process led to the generation of extensive and balanced training image data sets. The performance of the CNN-based binary classifiers was evaluated on separate test records from both databases. On our recorded data, an accuracy of 0.88 with regard to the safety-relevant classification was achieved. The subsequent evaluation on the Cholec80 data set yielded an accuracy of 0.84. The presented results demonstrate the feasibility of a binary classification of laparoscopic image data for the detection of adverse events in a surgical training environment using a specifically configured CNN architecture.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
Das Gehör ist mehr als jedes andere Sinnesorgan für die menschliche Sprache und ihre Entwicklung verantwortlich und stellt auf kleinstem Raum ein anatomisch und physiologisch einzigartiges Gebilde dar. Es beeindruckt vor allem durch seinen großen Dynamikbereich.
Während im Bereich der Hörschwelle der eben hörbare Schalldruck etwa 20 μPa beträgt, können die Drucke und Amplituden bis zur Schmerzgrenze noch etwa zweimillionenfach gesteigert werden. Derartige physiologische Schalldrücke sind jedoch immer noch verschwindend klein gegenüber den ebenfalls auf das Ohr einwirkenden statischen Luftdruckschwankungen, wie sie beispielsweise beim Treppensteigen, Zug- bzw. Autofahren, Fliegen oder beim Naseputzen vorkommen. Zwar führen diese zu einer veränderten Wahrnehmung, jedoch nicht zu einer Schäadigung des Ohrs. Diese Fähigkeit, trotz großer statischer Druckschwankungen in der Umgebung, gleichzeitig winzige physiologische Schalldrücke wahrnehmen zu können, ist hauptsächlich in den nichtlinearen, viskoelastischen Eigenschaften der Gelenke und Bänder des Mittelohrs sowie des Trommelfells begründet.
Das Ziel dieser Arbeit ist es, dieses nichtlineare Verhalten des Mittelohrs bei großen Belastungen und großen Verschiebungen durch nichtlineare, räumliche Ersatzmodelle auf mechanischer Basis abzubilden. Zur Charakterisierung der nichtlinearen Eigenschaften der Gerhörknöchelchenkette werden statische und dynamische Messungen an humanen Felsenbeinen durchgeführt. Ein besonderes Augenmerk ist auf die Charakterisierung der nichtlinearen, viskoelastischen Eigenschaften des Ringbands, des Trommelfells, der Trommelfellsehne und der beiden Mittelohrgelenke gerichtet. Im Blick auf die klinische Praxis wird zum einen anhand von Messergebnissen das Schädigungsrisiko bei einer Stapeschirurgie diskutiert sowie die Auswirkungen von Vorspannungen im Mittelohrapparat am Beispiel des aktiven Implantats Carina untersucht.