540 Chemie
Refine
Document Type
- Journal article (82)
- Book chapter (4)
- Conference proceeding (2)
- Doctoral Thesis (2)
- Report (2)
- Book (1)
Is part of the Bibliography
- yes (93)
Institute
- Life Sciences (80)
- Texoversum (10)
- Technik (2)
- ESB Business School (1)
Publisher
- MDPI (18)
- Elsevier (11)
- American Chemical Society (9)
- Wiley (9)
- ACS (7)
- Wiley-VCH (6)
- Springer (5)
- Royal Society of Chemistry (4)
- Deutsches Textilforschungszentrum Nord-West (2)
- RSC Publ. (2)
Rapid and robust quality monitoring of the composition of meat pastes is of fundamental importance in processing meat and sausage products. Here, an in-line near-infrared spectroscopy/micro-electro-mechanical-system-(MEMS)-based approach, combined with multivariate data analysis, was used for measuring the constituents fat, protein, water, and salt in meat pastes within a typical range of meat paste recipes. The meat pastes were spectroscopically characterized in-line with a novel process analyzer prototype. By integrating salt content in the calibration set, robust predictive PLSR models of high accuracy (R2 > 0.81) were obtained that take interfering matrix effects of the minor and NIR-inactive meat paste recipe component “salt” into account as well. The nonlinear blending behavior of salt concentration on the spectral features of meat pastes is discussed based on a designed mixture experiment with four systematically varied components.
The properties of polyelectrolyte multilayers are ruled by the process parameters employed during self-assembly. This is the first study in which a design of experiment approach was used to validate and control the production of ultrathin polyelectrolyte multilayer coatings by identifying the ranges of critical process parameters (polyelectrolyte concentration, ionic strength and pH) within which coatings with reproducible properties (thickness, refractive index and hydrophilicity) are created. Mathematical models describing the combined impact of key process parameters on coatings properties were developed demonstrating that only ionic strength and pH affect the coatings thickness, but not polyelectrolyte concentration. While the electrolyte concentration had a linear effect, the pH contribution was described by a quadratic polynomial. A significant contribution of this study is the development of a new approach to estimate the thickness of polyelectrolyte multilayer nanofilms by quantitative rhodamine B staining, which might be useful in all cases when ellipsometry is not feasible due to the shape complexity or small size of the coated substrate. The novel approach proposed here overcomes the limitations of known methods as it offers a low spatial sampling size and the ability to analyse a wide area without restrictions on the chemical composition and shape of the substrate.
Flame-retardant finishing of cotton fabrics using DOPO functionalized alkoxy- and amido alkoxysilane
(2023)
In the present study, DOPO-based alkoxysilane (DOPO-ETES) and amido alkoxysilane (DOPO-AmdPTES) were synthesized by one-step and without by-products as halogen-free flame retardants. The flame retardants were applied on cotton fabric utilizing sol–gel method and pad-dry-cure finishing process. The flame retardancy, the thermal stability and the combustion ehaviour of treated cotton were evaluated by surface and bottom edge ignition flame test (according to EN ISO 15025), thermogravimetric analysis (TGA) and micro-scale combustion calorimeter (MCC). Unlike CO/DOPO-ETES sample, cotton treated with DOPO-AmdPTES nanosols exhibits self-extinguishing ehaviour with high char residue, an improvement of the LOI value and a significant reduction of the PHRR, HRC and THR compared to pristine cotton. Cotton finished with DOPO-AmdPTES reveals a semi-durability after ten laundering cycles keeping the flame-retardant properties unchanged. According to the results obtained from TGA-FTIR, Py-GC/MS and XPS, the major activity of flame retardant occurs in the condensed phase via catalytic induced char formation as physical barrier along with the activity in the gas phase derived mainly from the dilution effect. The early degradation of CO/DOPO-AmdPTES compared to CO/DOPO-ETES, triggered by the cleavage of the weak bond between P and C=O, as the DFT study indicated, provides the beneficial effect of this flame retardant on the fire resistance of cellulose.
Titanium(IV) surface complexes bearing chelating catecholato ligands for enhanced band-gap reduction
(2023)
Protonolysis reactions between dimethylamido titanium(IV) catecholate [Ti(CAT)(NMe2)2]2 and neopentanol or tris(tert-butoxy)silanol gave catecholato-bridged dimers [(Ti(CAT)(OCH2tBu)2)(HNMe2)]2 and [Ti(CAT){OSi(OtBu)3}2(HNMe2)2]2, respectively. Analogous reactions using the dimeric dimethylamido titanium(IV) (3,6-di-tert-butyl)catecholate [Ti(CATtBu2-3,6)(NMe2)2]2 yielded the monomeric Ti(CATtBu2-3,6)(OCH2tBu)2(HNMe2)2 and Ti(CATtBu2-3,6)[OSi(OtBu)3]2(HNMe2)2. The neopentoxide complex Ti(CATtBu2-3,6)(OCH2tBu)2(HNMe2)2 engaged in further protonolysis reactions with Si–OH groups and was consequentially used for grafting onto mesoporous silica KIT-6. Upon immobilization, the surface complex [Ti(CATtBu2-3,6)(OCH2tBu)2(HNMe2)2]@[KIT-6] retained the bidentate chelating geometry of the catecholato ligand. This convergent grafting strategy was compared with a sequential and an aqueous approach, which gave either a mixture of bidentate chelating species with a bipodally anchored Ti(IV) center along with other physisorbed surface species or not clearly identifiable surface species. Extension of the convergent and aqueous approaches to anatase mesoporous titania (m-TiO2) enabled optical and electronic investigations of the corresponding surface species, revealing that the band-gap reduction is more pronounced for the bidentate chelating species (convergent approach) than for that obtained via the aqueous approach. The applied methods include X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and solid-state UV/vis spectroscopy. The energy-level alignment for the surface species from the aqueous approach, calculated from experimental data, accounts for the well-known type II excitation mechanism, whereas the findings indicate a distinct excitation mechanism for the bidentate chelating surface species of the material [Ti(CATtBu2-3,6)(OCH2tBu)2(HNMe2)2]@[m-TiO2].
Polyester fibers are widely employed in a multitude of sectors and applications from the technical textiles to everyday life thanks to their durability, strength, and flexibility. Despite these advantages, polyester lacks in dyeability, adhesion of coating, hydrophilicity, and it is characterized by a low wettability respect to natural fibers. On this regard, beyond the harmful hydrophobic textile finishings of polyester fabrics containing fluorine-compounds, and in order to avoid pre-treatments, such as laser irradiation to improve their surface properties, research is moving towards the development of fluorine-free and safer coatings. In this work, the (3-glycidyloxypropyl)trimethoxysilane (GPTMS) and various long alkyl-chain alkoxysilanes were employed for the fabrication in the presence of a catalyst of a water-based superhydrophobic finishing for polyester fabrics with a simple sol-gel, non-fluorinated, sustainable approach and the dip-pad-dry-cure method. The finished polyester fabrics surface properties were investigated by static and dynamic water repellency tests. Additionally, the resistance to common water-based liquids, abrasion resistance, moisture adsorption, and air permeability measurements were performed. Scanning electron microscopy was employed to examine the micro- and nano-morphology of the functionalized polyester fabrics surfaces. The obtained superhydrophobic finishings displayed high water-based stain resistance as well as good hydrophobicity after different cycles of abrasion.
Glioblastoma WHO IV belongs to a group of brain tumors that are still incurable. A promising treatment approach applies photodynamic therapy (PDT) with hypericin as a photosensitizer. To generate a comprehensive understanding of the photosensitizer-tumor interactions, the first part of our study is focused on investigating the distribution and penetration behavior of hypericin in glioma cell spheroids by fluorescence microscopy. In the second part, fluorescence lifetime imaging microscopy (FLIM) was used to correlate fluorescence lifetime (FLT) changes of hypericin to environmental effects inside the spheroids. In this context, 3D tumor spheroids are an excellent model system since they consider 3D cell–cell interactions and the extracellular matrix is similar to tumors in vivo. Our analytical approach considers hypericin as probe molecule for FLIM and as photosensitizer for PDT at the same time, making it possible to directly draw conclusions of the state and location of the drug in a biological system. The knowledge of both state and location of hypericin makes a fundamental understanding of the impact of hypericin PDT in brain tumors possible. Following different incubation conditions, the hypericin distribution in peripheral and central cryosections of the spheroids were analyzed. Both fluorescence microscopy and FLIM revealed a hypericin gradient towards the spheroid core for short incubation periods or small concentrations. On the other hand, a homogeneous hypericin distribution is observed for long incubation times and high concentrations. Especially, the observed FLT change is crucial for the PDT efficiency, since the triplet yield, and hence the O2 activation, is directly proportional to the FLT. Based on the FLT increase inside spheroids, an incubation time 30 min is required to achieve most suitable conditions for an effective PDT.
Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.
Highly active MgP catalyst for biodiesel production and polyethylene terephthalate depolymerization
(2022)
A highly active heterogeneous catalyst was designed and employed for two relevant transesterification reactions. i. e. biodiesel production and depolymerization of polyethylene terephthalate (PET). The material was prepared in the presence of pectin by the co-precipitation method followed by calcination at 600°C (MgP). MgP is efficient for biodiesel production, with a yield of ≈99% in 6 h/65°C, and with a molar ratio methanol: oil of 21:1. The reference material (MgR, prepared in absence of pectin) showed a poor catalytic performance in the same experimental conditions. For the methanolysis of PET, 100% PET conversion was obtained with 3 wt% catalyst, 200:1 methanol: PET molar ratio at milder conditions 160°C/4 h, compared to a 33% conversion without the presence of a catalyst. The catalyst showed remarkable stability and negligible deactivation after five consecutive runs. Materials were characterized by SEM, XRD, IR, TGA, and BET.
The textile-finishing industry, is one of the main sources of persistent organic pollutants in water; in this regard, it is necessary to develop and employ new sustainable approaches for fabric finishing and treatment. This research study shows the development of an efficient and eco-friendly procedure to form highly hydrophobic surfaces on cotton fabrics using different modified silica sols. In particular, the formation of highly hydrophobic surfaces on cotton fabrics was studied by using a two-step treatment procedure, i.e., first applying a hybrid silica sol obtained by hydrolysis and subsequent condensation of (3-Glycidyloxypropyl) trimethoxy silane with different alkyl(trialkoxy) silane under acid conditions, and then applying hydrolyzed hexadecyltrimethoxysilane on the treated fabrics to further improve the fabrics’ hydrophobicity. The treated cotton fabrics showed excellent water repellency with a water contact angle above 150◦ under optimum treatment conditions. The cooperative action of rough surface structure due to the silica sol nanoparticles and the low surface energy caused by long-chain alkyl(trialkoxy)silane in the nanocomposite coating, combined with the expected roughness on microscale due to the fabrics and fiber structure, provided the treated cotton fabrics with excellent, almost super, hydrophobicity and water-based stain resistance in an eco-sustainable way.