570 Biowissenschaften, Biologie
Refine
Document Type
- Journal article (85)
- Conference proceeding (5)
- Doctoral Thesis (1)
Language
- English (91)
Is part of the Bibliography
- yes (91)
Institute
- Life Sciences (68)
- Informatik (17)
- Technik (5)
- ESB Business School (1)
Publisher
- De Gruyter (26)
- MDPI (14)
- Elsevier (13)
- Wiley (8)
- Springer (7)
- Frontiers Media (4)
- IM Publications Open LLP (2)
- Liebert (2)
- Royal Society of Chemistry (2)
- Wiley-Blackwell (2)
Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today’s society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs—Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.
At the beginning of 2022, Frontiers in Bioengineering and Biotechnology - Biomaterials Section has published a Research Topic on “Functional Surfaces and Biomaterials.” The aim of this Research Topic is to summarize the current state of research and development in the field of functional surfaces and biomaterials with a particular focus on biotechnological and medical applications.
The guest editorial team would like to thank all colleagues from around the world who submitted their reviews and research articles for the Research Topic. By the end of August 2022, we have successfully collected 20 articles by 138 participating authors following the peer review process. We also tried to select manuscripts from different research areas to cover the most relevant Research Topic of interest, from drug delivery systems to bone tissue engineering to biosensors and general aspects in biomedicine. By the end of December, the 20 articles had been viewed for more than 21000 times with downloads more than 4,000 times, and 11 articles have reached more than 1,000 views.
How mechanical and physicochemical material characteristics influence adipose-derived stem cell fate
(2023)
Adipose-derived stem cells (ASCs) are a subpopulation of mesenchymal stem cells. Compared to bone marrow-derived stem cells, they can be harvested with minimal invasiveness. ASCs can be easily expanded and were shown to be able to differentiate into several clinically relevant cell types. Therefore, this cell type represents a promising component in various tissue engineering and medical approaches (e.g., cell therapy). In vivo cells are surrounded by the extracellular matrix (ECM) that provides a wide range of tissue-specific physical and chemical cues, such as stiffness, topography, and chemical composition. Cells can sense the characteristics of their ECM and respond to them in a specific cellular behavior (e.g., proliferation or differentiation). Thus, in vitro biomaterial properties represent an important tool to control ASCs behavior. In this review, we give an overview of the current research in the mechanosensing of ASCs and current studies investigating the impact of material stiffens, topography, and chemical modification on ASC behavior. Additionally, we outline the use of natural ECM as a biomaterial and its interaction with ASCs regarding cellular behavior.
Cytocompatibility analyses of new implant materials or biomaterials are not only prescribed by the Medical Device Regulation (MDR), as defined in the DIN ISO Norm 10993-5 and -12, but are also increasingly replacing animal testing. In this context, jellyfish collagen has already been established as an alternative to mammalian collagen in different cell culture conditions, but a lack of knowledge exists about its applicability for cytocompatibility analyses of biomaterials. Thus, the present study was conducted to compare well plates coated with collagen type 0 derived from Rhizostoma pulmo with plates coated with bovine and porcine collagen. The coated well plates were analysed in vitro for their cytocompatibility, according to EN ISO 10993-5/−12, using both L929 fibroblasts and MC3T3 pre-osteoblasts. Thereby, the coated well plates were compared, using established materials as positive controls and a cytotoxic material, RM-A, as a negative control. L929 cells exhibited a significantly higher viability (#### p < 0.0001), proliferation (## p < 0.01), and a lower cytotoxicity (## p < 0.01 and # p < 0.05)) in the Jellagen® group compared to the bovine and porcine collagen groups. MC3T3 cells showed similar viability and acceptable proliferation and cytotoxicity in all collagen groups. The results of the present study revealed that the coating of well plates with collagen Type 0 derived from R. pulmo leads to comparable results to the case of well plates coated with mammalian collagens. Therefore, it is fully suitable for the in vitro analyses of the cytocompatibility of biomaterials or medical devices.
Bioactive cations, including calcium, copper and magnesium, have shown the potential to become the alternative to protein growth factor-based therapeutics for bone healing. Ion substitutions are less costly, more stable, and more effective at low concentrations. Although they have been shown to be effective in providing bone grafts with more biological functions, the precise control of ion release kinetics is still a challenge. Moreover, the synergistic effect of three or more metal ions on bone regeneration has rarely been studied. In this study, vaterite-calcite CaCO3 particles were loaded with copper (Cu2+) and magnesium (Mg2+). The polyelectrolyte multilayer (PEM) was deposited on CaCuMg-CO3 particles via layer-by-layer technique to further improve the stability and biocompatibility of the particles and to enable controlled release of multiple metal ions. The PEM coated microcapsules were successfully combined with collagen at the outmost layer, providing a further stimulating microenvironment for bone regeneration. The in vitro release studies showed remarkably stable release of Cu2+ in 2 months without initial burst release. Mg2+ was released in relatively low concentration in the first 7 days. Cell culture studies showed that CaCuMg-PEM-Col microcapsules stimulated cell proliferation, extracellular maturation and mineralization more effectively than blank control and other microcapsules without collagen adsorption (Ca-PEM, CaCu-PEM, CaMg-PEM, CaCuMg-PEM). In addition, the CaCuMg-PEM-Col microcapsules showed positive effects on osteogenesis and angiogenesis in gene expression studies. The results indicate that such a functional and controllable delivery system of multiple bioactive ions might be a safer, simpler and more efficient alternative of protein growth factor-based therapeutics for bone regeneration. It also provides an effective method for functionalizing bone grafts for bone tissue engineering.
Hybrid organic/inorganic nanocomposites combine the distinct properties of the organic polymer and the inorganic filler, resulting in overall improved system properties. Monodisperse porous hybrid beads consisting of tetraethylene pentamine functionalized poly(glycidyl methacrylateco-ethylene glycol dimethacrylate) particles and silica nanoparticles (SNPs) were synthesized under Stoeber sol-gel process conditions. A wide range of hybrid organic/silica nanocomposite materials with different material properties was generated. The effects of n(H2O)/n(TEOS) and c(NH3 ) on the hybrid bead properties particle size, SiO2 content, median pore size, specific surface area, pore volume and size of the SNPs were studied. Quantitative models with a high robustness and predictive power were established using a statistical and systematic approach based on response surface methodology. It was shown that the material properties depend in a complex way on the process factor settings and exhibit non-linear behaviors as well as partly synergistic interactions between the process factors. Thus, the silica content, median pore size, specific surface area, pore volume and size of the SNPs are non-linearly dependent on the water-to-precursor ratio. This is attributed to the effect of the water-to-precursor ratio on the hydrolysis and condensation rates of TEOS. A possible mechanism of SNP incorporation into the porous polymer network is discussed.
Intraoperative imaging can assist neurosurgeons to define brain tumours and other surrounding brain structures. Interventional ultrasound (iUS) is a convenient modality with fast scan times. However, iUS data may suffer from noise and artefacts which limit their interpretation during brain surgery. In this work, we use two deep learning networks, namely UNet and TransUNet, to make automatic and accurate segmentation of the brain tumour in iUS data. Experiments were conducted on a dataset of 27 iUS volumes. The outcomes show that using a transformer with UNet is advantageous providing an efficient segmentation modelling long-range dependencies between each iUS image. In particular, the enhanced TransUNet was able to predict cavity segmentation in iUS data with an inference rate of more than 125 FPS. These promising results suggest that deep learning networks can be successfully deployed to assist neurosurgeons in the operating room.
With the progress of technology in modern hospitals, an intelligent perioperative situation recognition will gain more relevance due to its potential to substantially improve surgical workflows by providing situation knowledge in real-time. Such knowledge can be extracted from image data by machine learning techniques but poses a privacy threat to the staff’s and patients’ personal data. De-identification is a possible solution for removing visual sensitive information. In this work, we developed a YOLO v3 based prototype to detect sensitive areas in the image in real-time. These are then deidentified using common image obfuscation techniques. Our approach shows that it is principle suitable for de-identifying sensitive data in OR images and contributes to a privacyrespectful way of processing in the context of situation recognition in the OR.
Ultra wideband real-time locating system for tracking people and devices in the operating room
(2022)
Position tracking within the OR could be one possible input for intraoperative situation recognition. Our approach demonstrates a Real-time Locating System (RTLS) using the Ultra Wideband (UWB) technology to determine the position of people or objects. The UWB RTLS was integrated into the research OR at Reutlingen University and the system’s settings were optimized regarding the four factors accuracy, susceptibility to interference, range, and latency. Therefore, different parameters were adapted and the effects on the factors were compared. Goodtracking quality could be achieved under optimal settings. These results indicate that a UWB RTLS is well suited to determine the position of people and devices in our setting. The feasibility of the system needsto be evaluated under real OR conditions.
The paper describes how eye-tracking can be used to explore electronic patient records (EPR) in a sterile environment. As an information display, we used a system that we developed for the presentation of patient data and for supporting surgical hand disinfection. The eye-tracking was performed using the Tobii Eye Tracker 4C, and the connection between the eye-tracker and the HTML website was realized using the Tobii EyeX Chrome Extension. Interactions with the EPR are triggered by fixations of icons. The interaction was working as intended, but test persons reported a high mental load while using the system.