570 Biowissenschaften, Biologie
Refine
Document Type
- Journal article (82)
- Conference proceeding (5)
- Doctoral Thesis (1)
Language
- English (88)
Is part of the Bibliography
- yes (88)
Institute
- Life Sciences (65)
- Informatik (17)
- Technik (5)
- ESB Business School (1)
Publisher
- De Gruyter (26)
- Elsevier (12)
- MDPI (12)
- Wiley (8)
- Springer (7)
- Frontiers Media (3)
- IM Publications Open LLP (2)
- Liebert (2)
- Royal Society of Chemistry (2)
- Wiley-Blackwell (2)
Cytocompatibility analyses of new implant materials or biomaterials are not only prescribed by the Medical Device Regulation (MDR), as defined in the DIN ISO Norm 10993-5 and -12, but are also increasingly replacing animal testing. In this context, jellyfish collagen has already been established as an alternative to mammalian collagen in different cell culture conditions, but a lack of knowledge exists about its applicability for cytocompatibility analyses of biomaterials. Thus, the present study was conducted to compare well plates coated with collagen type 0 derived from Rhizostoma pulmo with plates coated with bovine and porcine collagen. The coated well plates were analysed in vitro for their cytocompatibility, according to EN ISO 10993-5/−12, using both L929 fibroblasts and MC3T3 pre-osteoblasts. Thereby, the coated well plates were compared, using established materials as positive controls and a cytotoxic material, RM-A, as a negative control. L929 cells exhibited a significantly higher viability (#### p < 0.0001), proliferation (## p < 0.01), and a lower cytotoxicity (## p < 0.01 and # p < 0.05)) in the Jellagen® group compared to the bovine and porcine collagen groups. MC3T3 cells showed similar viability and acceptable proliferation and cytotoxicity in all collagen groups. The results of the present study revealed that the coating of well plates with collagen Type 0 derived from R. pulmo leads to comparable results to the case of well plates coated with mammalian collagens. Therefore, it is fully suitable for the in vitro analyses of the cytocompatibility of biomaterials or medical devices.
Bioactive cations, including calcium, copper and magnesium, have shown the potential to become the alternative to protein growth factor-based therapeutics for bone healing. Ion substitutions are less costly, more stable, and more effective at low concentrations. Although they have been shown to be effective in providing bone grafts with more biological functions, the precise control of ion release kinetics is still a challenge. Moreover, the synergistic effect of three or more metal ions on bone regeneration has rarely been studied. In this study, vaterite-calcite CaCO3 particles were loaded with copper (Cu2+) and magnesium (Mg2+). The polyelectrolyte multilayer (PEM) was deposited on CaCuMg-CO3 particles via layer-by-layer technique to further improve the stability and biocompatibility of the particles and to enable controlled release of multiple metal ions. The PEM coated microcapsules were successfully combined with collagen at the outmost layer, providing a further stimulating microenvironment for bone regeneration. The in vitro release studies showed remarkably stable release of Cu2+ in 2 months without initial burst release. Mg2+ was released in relatively low concentration in the first 7 days. Cell culture studies showed that CaCuMg-PEM-Col microcapsules stimulated cell proliferation, extracellular maturation and mineralization more effectively than blank control and other microcapsules without collagen adsorption (Ca-PEM, CaCu-PEM, CaMg-PEM, CaCuMg-PEM). In addition, the CaCuMg-PEM-Col microcapsules showed positive effects on osteogenesis and angiogenesis in gene expression studies. The results indicate that such a functional and controllable delivery system of multiple bioactive ions might be a safer, simpler and more efficient alternative of protein growth factor-based therapeutics for bone regeneration. It also provides an effective method for functionalizing bone grafts for bone tissue engineering.
Hybrid organic/inorganic nanocomposites combine the distinct properties of the organic polymer and the inorganic filler, resulting in overall improved system properties. Monodisperse porous hybrid beads consisting of tetraethylene pentamine functionalized poly(glycidyl methacrylateco-ethylene glycol dimethacrylate) particles and silica nanoparticles (SNPs) were synthesized under Stoeber sol-gel process conditions. A wide range of hybrid organic/silica nanocomposite materials with different material properties was generated. The effects of n(H2O)/n(TEOS) and c(NH3 ) on the hybrid bead properties particle size, SiO2 content, median pore size, specific surface area, pore volume and size of the SNPs were studied. Quantitative models with a high robustness and predictive power were established using a statistical and systematic approach based on response surface methodology. It was shown that the material properties depend in a complex way on the process factor settings and exhibit non-linear behaviors as well as partly synergistic interactions between the process factors. Thus, the silica content, median pore size, specific surface area, pore volume and size of the SNPs are non-linearly dependent on the water-to-precursor ratio. This is attributed to the effect of the water-to-precursor ratio on the hydrolysis and condensation rates of TEOS. A possible mechanism of SNP incorporation into the porous polymer network is discussed.
Intraoperative imaging can assist neurosurgeons to define brain tumours and other surrounding brain structures. Interventional ultrasound (iUS) is a convenient modality with fast scan times. However, iUS data may suffer from noise and artefacts which limit their interpretation during brain surgery. In this work, we use two deep learning networks, namely UNet and TransUNet, to make automatic and accurate segmentation of the brain tumour in iUS data. Experiments were conducted on a dataset of 27 iUS volumes. The outcomes show that using a transformer with UNet is advantageous providing an efficient segmentation modelling long-range dependencies between each iUS image. In particular, the enhanced TransUNet was able to predict cavity segmentation in iUS data with an inference rate of more than 125 FPS. These promising results suggest that deep learning networks can be successfully deployed to assist neurosurgeons in the operating room.
With the progress of technology in modern hospitals, an intelligent perioperative situation recognition will gain more relevance due to its potential to substantially improve surgical workflows by providing situation knowledge in real-time. Such knowledge can be extracted from image data by machine learning techniques but poses a privacy threat to the staff’s and patients’ personal data. De-identification is a possible solution for removing visual sensitive information. In this work, we developed a YOLO v3 based prototype to detect sensitive areas in the image in real-time. These are then deidentified using common image obfuscation techniques. Our approach shows that it is principle suitable for de-identifying sensitive data in OR images and contributes to a privacyrespectful way of processing in the context of situation recognition in the OR.
Ultra wideband real-time locating system for tracking people and devices in the operating room
(2022)
Position tracking within the OR could be one possible input for intraoperative situation recognition. Our approach demonstrates a Real-time Locating System (RTLS) using the Ultra Wideband (UWB) technology to determine the position of people or objects. The UWB RTLS was integrated into the research OR at Reutlingen University and the system’s settings were optimized regarding the four factors accuracy, susceptibility to interference, range, and latency. Therefore, different parameters were adapted and the effects on the factors were compared. Goodtracking quality could be achieved under optimal settings. These results indicate that a UWB RTLS is well suited to determine the position of people and devices in our setting. The feasibility of the system needsto be evaluated under real OR conditions.
The paper describes how eye-tracking can be used to explore electronic patient records (EPR) in a sterile environment. As an information display, we used a system that we developed for the presentation of patient data and for supporting surgical hand disinfection. The eye-tracking was performed using the Tobii Eye Tracker 4C, and the connection between the eye-tracker and the HTML website was realized using the Tobii EyeX Chrome Extension. Interactions with the EPR are triggered by fixations of icons. The interaction was working as intended, but test persons reported a high mental load while using the system.
The extracellular matrix (ECM) is the non-cellular part of tissues and represents the natural environment of the cells. Next to structural stability, it provides various physical, chemical, and mechanical cues that strongly regulate and influence cellular behavior and are required for tissue morphogenesis, differentiation, and homeostasis. Due to its promising characteristics, ECM is used in a wide range of tissue engineering and regenerative medicine approaches as a biomaterial for coatings and scaffolds. To date, there are two sources for ECM material. First, native ECM is generated by the removal of the residing cells of a tissue or organ (decellularized ECM; dECM). Secondly, cell-derived ECM (cdECM) can be generated by and isolated from in vitro cultured cells. Although both types of ECM were intensively used for tissue engineering and regenerative medicine approaches, studies directly characterizing and comparing them are rare. Hence, in the first part of this thesis, dECM from adipose tissue and cdECM from stem cells and adipogenic differentiated stem cells from adipose tissue (ASCs) were characterized towards their macromolecular composition, structural features, and biological purity. The dECM was found to exhibit higher levels of collagens and lower levels of sulfated glycosaminoglycans compared to cdECMs. Structural characteristics revealed an immature state of collagen fibers in cdECM samples. The obtained results revealed differences between the two ECMs that can relevantly impact cellular behavior and subsequently experimental outcome and should therefore be considered when choosing a biomaterial for a specific application. The establishment of a functional vascular system in tissue constructs to realize an adequate nutrient supply remains challenging. In the second part, the supporting effect of cdECM on the self‐assembled formation of prevascular‐like structures by microvascular endothelial cells (mvECs) was investigated. It could be observed that cdECM, especially adipogenic differentiated cdECM, enhanced the formation of prevascular-like structures. An increased concentration of proangiogenic factors was found in cdECM substrates. The demonstration of cdECMs capability to induce the spontaneous formation of prevascular‐like structures by mvECs highlights cdECM as a promising biomaterial for adipose tissue engineering. Depending on the purpose of the ECM material chemical modification might be necessary. In the third and last part, the chemical functionalization of cdECM with dienophiles (terminal alkenes, cyclopropene) by metabolic glycoengineering (MGE) was demonstrated. MGE allows the chemical functionalization of cdECM via the natural metabolism of the cells and without affecting the chemical integrity of the cdECM. The incorporated dienophile chemical groups can be specifically addressed via catalysts-free, cell-friendly inverse electron-demand Diels‐Alder reaction. Using this system, the successful modification of cdECM from ASCs with an active enzyme could be shown. The possibility to modify cdECM via a cell-friendly chemical reaction opens up a wide range of possibilities to improve cdECM depending on the purpose of the material. Altogether, this thesis highlighted the differences between adipose dECM and cdECM from ASCs and demonstrated cdECM as a promising alternative to native dECM for application in tissue engineering and regenerative medicine approaches.
Adipose tissue is related to the development and manifestation of multiple diseases, demonstrating the importance of suitable in vitro models for research purposes. In this study, adipose tissue lobuli were explanted, cultured, and used as an adipose tissue control to evaluate in vitro generated adipose tissue models. During culture, lobule exhibited a stable weight, lactate dehydrogenase, and glycerol release over 15 days. For building up in vitro adipose tissue models, we adapted the biomaterial gelatin methacryloyl (GelMA) composition and handling to homogeneously mix and bioprint human primary mature adipocytes (MA) and adipose-derived stem cells (ASCs), respectively. Accelerated cooling of the bioink turned out to be essential for the homogeneous distribution of lipid-filled MAs in the hydrogel. Last, we compared manual and bioprinted GelMA hydrogels with MA or ASCs and the explanted lobules to evaluate the impact of the printing process and rate the models concerning the physiological reference. The viability analyses demonstrated no significant difference between the groups due to additive manufacturing. The staining of intracellular lipids and perilipin A suggest that GelMA is well suited for ASCs and MA. Therefore, we successfully constructed physiological in vitro models by bioprinting MA-containing GelMA bioinks.
Continuous manufacturing is becoming more important in the biopharmaceutical industry. This processing strategy is favorable, as it is more efficient, flexible, and has the potential to produce higher and more consistent product quality. At the same time, it faces some challenges, especially in cell culture. As a steady state has to be maintained over a prolonged time, it is unavoidable to implement advanced process analytical technologies to control the relevant process parameters in a fast and precise manner. One such analytical technology is Raman spectroscopy, which has proven its advantages for process monitoring and control mostly in (fed-) batch cultivations. In this study, an in-line flow cell for Raman spectroscopy is included in the cell-free harvest stream of a perfusion process. Quantitative models for glucose and lactate were generated based on five cultivations originating from varying bioreactor scales. After successfully validating the glucose model (Root Mean Square Error of Prediction (RMSEP) of ∼0.2 g/L), it was employed for control of an external glucose feed in cultivation with a glucose-free perfusion medium. The generated model was successfully applied to perform process control at 4 g/L and 1.5 g/L glucose over several days, respectively, with variability of ±0.4 g/L. The results demonstrate the high potential of Raman spectroscopy for advanced process monitoring and control of a perfusion process with a bioreactor and scale-independent measurement method.