620 Ingenieurwissenschaften und Maschinenbau
Refine
Document Type
- Conference proceeding (149)
- Journal article (101)
- Book (21)
- Book chapter (17)
- Patent / Standard / Guidelines (11)
- Working Paper (5)
- Doctoral Thesis (4)
- Report (3)
- Anthology (1)
Is part of the Bibliography
- yes (312)
Institute
- Technik (229)
- ESB Business School (40)
- Informatik (19)
- Life Sciences (14)
- Texoversum (9)
- Zentrale Einrichtungen (1)
Publisher
- IEEE (85)
- Elsevier (23)
- Springer (21)
- MDPI (14)
- VDE Verlag GmbH (11)
- VDE Verlag (8)
- Arbeitsgemeinschaft Simulation (ASIM) (5)
- Public Verl.-Ges. und Anzeigenagentur (5)
- Hochschule Ulm (4)
- Landesanstalt für Umwelt Baden-Württemberg (4)
Offshore-Windenergie wird global zunehmend intensiver ausgebaut. Auch die deutsche Bundesregierung hat die Ausbauziele auf 30 GW installierte Leistung bis 2030 erhöht, von derzeit ca. 8 GW. Wie kann die deutsche Offshore-Windenergiebranche dies erreichen und was bedeutet das für ihre Zulieferer und Dienstleister? Vier Szenarien beschreiben mögliche Zukünfte. Technischer Fortschritt entlang der gesamten Wertschöpfungskette, Lieferkettensicherheit, Regulatorik sowie Fachkräfteverfügbarkeit sind die kritischen Erfolgsfaktoren.
We present the results of an extensive characterization of the performance and stability of a third-order continuous-time delta-sigma modulator with active coefficient error compensation. Using our previously published coefficient tuning technique, process variation induced R-C time-constant (TC) errors in the forward signal path can be compensated indirectly using continuously tunable DACs in the feedback path. To validate our technique experimentally with a range of real TC variations, we designed a modulator with discretely configurable integration capacitor arrays in a 0.35-μm CMOS process. We configured the capacitors of the fabricated device for a range of total TC variations from -28.4 % to +19.3 % and measured the signal-to-noise ratio (SNR) as a function of the input amplitude before and after compensating the variations electrically using the feedback DACs. The results show that our tuning technique is capable of restoring the desired nominal modulator performance over the entire parameter variation range, including the system’s nominal maximum stable amplitude (MSA).
We address the problem of 3D face recognition based on either 3D sensor data, or on a 3D face reconstructed from a 2D face image. We focus on 3D shape representation in terms of a mesh of surface normal vectors. The first contribution of this work is an evaluation of eight different 3D face representations and their multiple combinations. An important contribution of the study is the proposed implementation, which allows these representations to be computed directly from 3D meshes, instead of point clouds. This enhances their computational efficiency. Motivated by the results of the comparative evaluation, we propose a 3D face shape descriptor, named Evolutional Normal Maps, that assimilates and optimises a subset of six of these approaches. The proposed shape descriptor can be modified and tuned to suit different tasks. It is used as input for a deep convolutional network for 3D face recognition. An extensive experimental evaluation using the Bosphorus 3D Face, CASIA 3D Face and JNU-3D Face datasets shows that, compared to the state of the art methods, the proposed approach is better in terms of both computational cost and recognition accuracy.
Verteilnetzbetreiber müssen verschiedene Maßnahmen ergreifen, um den Herausforderungen der zunehmenden Installation dezentraler Erzeugungsanlagen zu begegnen. Die meisten dieser Maßnahmen führen zwar zur Einhaltung der Spannungsgrenzwerte, sie läsen jedoch nicht das Problem der Rückspeisung in die überlagerte Netzebene und die damit verbundenen Leistungsverluste. Im Projekt „Demo-rONT-Alternative“ wurde ein Prototyp für einen fernsteuerbaren Kabelverteiler entwickelt, um die Trennstellenverschiebung automatisiert durchführen zu können.
The replacement of conventional material with recyclates affects product personality, particularly regarding sustainability aspects influencing consumer behaviour. A definition of personality for products made of recyclates is missing in literature. As these products require appropriate aesthetics based on material origin to communicate the advantage concerning sustainability, there is a need for research in this regard. This paper aims to develop an adequate personality of a reusable water bottle made of ocean plastic by collecting personality traits that evoke associations related to the material's origin and sustainability. We conducted two quantitative field studies. Study 1 collected associated visual perceived attributes and context-related personality traits in order to develop and visualize a preliminary design. Study 2 evaluated the design regarding associated personality traits. The overall outcome was a product personality scale consisting of 23 items plus a concrete design recommendation for a water bottle made of recycled ocean plastic. The assessment of degree of sustainability was strongly influenced by participants’ associations with personal use, familiarity with usage and the factor of stability and resilience.
Der Erfolg der Energiewende in Deutschland setzt eine zunehmende Anzahl an dezentralen elektrischen Erzeugungsanlagen (EZA) voraus. Diese dezentralen EZA, wie Photovoltaikanlagen oder Blockheizkraftwerke, bringen für Verteilnetzbetreiber große Herausforderungen mit sich. Im Rahmen des geförderten Forschungsprojekts „Demonstrator Automatisierte Kabelverteil (KV) als Alternative zum regelbaren Ortsnetztransformator (DEMO rONT-Alternative)“ wurde ein neuer Ansatz für die Lösung der bestehenden Problematik erforscht. Dieser besteht in der aktiven Änderung der Topologie der Netzgebiete je nach elektrischer Last und PV-Einspeisung (Trennstellenverlagerung).
Sleep is essential to physical and mental health. However, the traditional approach to sleep analysis—polysomnography (PSG)—is intrusive and expensive. Therefore, there is great interest in the development of non-contact, non-invasive, and non-intrusive sleep monitoring systems and technologies that can reliably and accurately measure cardiorespiratory parameters with minimal impact on the patient. This has led to the development of other relevant approaches, which are characterised, for example, by the fact that they allow greater freedom of movement and do not require direct contact with the body, i.e., they are non-contact. This systematic review discusses the relevant methods and technologies for non-contact monitoring of cardiorespiratory activity during sleep. Taking into account the current state of the art in non-intrusive technologies, we can identify the methods of non-intrusive monitoring of cardiac and respiratory activity, the technologies and types of sensors used, and the possible physiological parameters available for analysis. To do this, we conducted a literature review and summarised current research on the use of non-contact technologies for non-intrusive monitoring of cardiac and respiratory activity. The inclusion and exclusion criteria for the selection of publications were established prior to the start of the search. Publications were assessed using one main question and several specific questions. We obtained 3774 unique articles from four literature databases (Web of Science, IEEE Xplore, PubMed, and Scopus) and checked them for relevance, resulting in 54 articles that were analysed in a structured way using terminology. The result was 15 different types of sensors and devices (e.g., radar, temperature sensors, motion sensors, cameras) that can be installed in hospital wards and departments or in the environment. The ability to detect heart rate, respiratory rate, and sleep disorders such as apnoea was among the characteristics examined to investigate the overall effectiveness of the systems and technologies considered for cardiorespiratory monitoring. In addition, the advantages and disadvantages of the considered systems and technologies were identified by answering the identified research questions. The results obtained allow us to determine the current trends and the vector of development of medical technologies in sleep medicine for future researchers and research.
Sleep disorders can impact daily life, affecting physical, emotional, and cognitive well-being. Due to the time-consuming, highly obtrusive, and expensive nature of using the standard approaches such as polysomnography, it is of great interest to develop a noninvasive and unobtrusive in-home sleep monitoring system that can reliably and accurately measure cardiorespiratory parameters while causing minimal discomfort to the user’s sleep. We developed a low-cost Out of Center Sleep Testing (OCST) system with low complexity to measure cardiorespiratory parameters. We tested and validated two force-sensitive resistor strip sensors under the bed mattress covering the thoracic and abdominal regions. Twenty subjects were recruited, including 12 males and 8 females. The ballistocardiogram signal was processed using the 4th smooth level of the discrete wavelet transform and the 2nd order of the Butterworth bandpass filter to measure the heart rate and respiration rate, respectively. We reached a total error (concerning the reference sensors) of 3.24 beats per minute and 2.32 rates for heart rate and respiration rate, respectively. For males and females, heart rate errors were 3.47 and 2.68, and respiration rate errors were 2.32 and 2.33, respectively. We developed and verified the reliability and applicability of the system. It showed a minor dependency on sleeping positions, one of the major cumbersome sleep measurements. We identified the sensor under the thoracic region as the optimal configuration for cardiorespiratory measurement. Although testing the system with healthy subjects and regular patterns of cardiorespiratory parameters showed promising results, further investigation is required with the bandwidth frequency and validation of the system with larger groups of subjects, including patients.
Supply chains have evolved into dynamic, interconnected supply networks, which increases the complexity of achieving end-to-end traceability of object flows and their experienced events. With its capability of ensuring a secure, transparent, and immutable environment without relying on a trusted third party, the emerging blockchain technology shows strong potential to enable end-to-end traceability in such complex multitiered supply networks. This paper aims to overcome the limitations of existing blockchain-based traceability architectures regarding their object-related event mapping ability, which involves mapping the creation and deletion of objects, their aggregation and disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper proposes a novel ‘blueprint-based’ token concept, which allows clients to group tokens into different types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting conditions, which, for example, are necessary when mapping assembly processes. In addition, the token concept contains logic for reflecting all conducted object-related events in an integrated token history. Finally, for validation purposes, this article implements the architecture’s components in code and proves its applicability based on the Ethereum blockchain. As a result, the proposed blockchain-based traceability architecture covers all object-related supply chain events and proves its general-purpose end-to-end traceability capabilities of object flows.