The 10 most recently published documents
Von den Covid-19-Restriktionen wurden im Automobilsektor die Zulieferer wesentlich stärker getroffen als die Fahrzeughersteller. Vor allem die Entwicklung des Working Capitals im ersten Pandemie-Jahr erwies sich als kritisch. Der Beitrag gibt einen Überblick über mögliche Lösungen für eine allseits vorteilhaftere, stabile Supply-Chain-Finanzierung in künftigen Krisen.
The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.
Schweißerschutzkleidung muss unterschiedlichen Anforderungen genügen. Sie muss u.a. flammfest sein, den Schweißer vor Metallspritzern schützen, die beim Schweißen entstehen, und auch einen Schutz vor UV-Licht sicherstellen, das im Schweißbogen entsteht. Besonders der Schutz vor Metallspritzern wird durch das Flächengewicht der Textilien bestimmt. Der entsprechende Schutzfaktor wird durch Tropfen flüssigen Eisens bestimmt, die auf ein Gewebe fallen. Dabei gilt: je höher das Flächengewicht, desto höher der Schutz vor Schweißspritzern. Jedoch gilt auch: je höher das Flächengewicht, desto schlechter ist der Tragekomfort und desto wärmender ist die Kleidung und damit die körperliche Belastung des Trägers. Durch die Applikation von Nanopartikeln ist es möglich, das benötigte Flächengewicht der Kleidung zu reduzieren.
Towards a model for holistic mapping of supply chains by means of tracking and tracing technologies
(2022)
The usage of tracking and tracing technologies not only enables transparency and visibility of supply chains but also offers far-reaching advantages for companies, such as ensuring product quality or reducing supplier risks. Increasing the amount of shared information supports both internal and external planning processes as well as the stability and resilience of globally operating value chains. This paper aims to differentiate and define the functionalities of tracking and tracing technologies that are frequently used interchangeably in literature. Furthermore, this paper incorporates influencing factors impacting a sequencing of the connected world in Industry4.0 supply chain networks. This includes legal influences, the embedment of supply chain-related standards, and new possibilities of emerging technologies. Finally, the results are summarized in a model for the holistic mapping of supply chains by means of tracking and tracing technologies. The resulting technological solutions that can be derived from the model enable companies to address missing elements in order to enable the holistic mapping of supply chain events as well as the transparent representation of a digital shadow throughout the entire supply chain.
The proper selection of a demand forecasting method is directly linked to the success of supply chain management (SCM). However, today’s manufacturing companies are confronted with uncertain and dynamic markets. Consequently, classical statistical methods are not always appropriate for accurate and reliable forecasting. Algorithms of Artificial intelligence (AI) are currently used to improve statistical methods. Existing literature only gives a very general overview of the AI methods used in combination with demand forecasting. This paper provides an analysis of the AI methods published in the last five years (2017-2021). Furthermore, a classification is presented by clustering the AI methods in order to define the trend of the methods applied. Finally, a classification of the different AI methods according to the dimensionality of data, volume of data, and time horizon of the forecast is presented. The goal is to support the selection of the appropriate AI method to optimize demand forecasting.
Physicians in interventional radiology are exposed to high physical stress. To avoid negative long-term effects resulting from unergonomic working conditions, we demonstrated the feasibility of a system that gives feedback about unergonomic
situations arising during the intervention based on the Azure Kinect camera. The overall feasibility of the approach could be shown.
Artificial intelligence is a field of research that is seen as a means of realization regarding digitalization and industry 4.0. It is considered as the critical technology needed to drive the future evolution of manufacturing systems. At the same time, autonomous guided vehicles (AGV) developed as an essential part due to the flexibility they contribute to the whole manufacturing process within manufacturing systems. However, there are still open challenges in the intelligent control of these vehicles on the factory floor. Especially when considering dynamic environments where resources should be controlled in such a way, that they can be adjusted to turbulences efficiently. Therefore, this paper aimed to develop a conceptual framework for addressing a catalog of criteria that considers several machine learning algorithms to find the optimal algorithm for the intelligent control of AGVs. By applying the developed framework, an algorithm is automatically selected that is most suitable for the current operation of the AGV in order to enable efficient control within the factory environment. In future work, this decision-making framework can be transferred to even more scenarios with multiple AGV systems, including internal communication along with AGV fleets. With this study, the automatic selection of the optimal machine learning algorithm for the AGV improves the performance in such a way, that computational power is distributed within a hybrid system linking the AGV and cloud storage in an efficient manner.
Sägen ist ein häufig unterschätzter spanender Prozess. Oft kommt das Sägen nur zum Zuschnitt von Rohteilen zum Einsatz. Bei der Bearbeitung von Leichtbauwerkstoffen werden damit jedoch Schichten in Toleranz direkt auf die montagefertigen Konturen zugeschnitten. Zur Steigerung von Qualität und Zuverlässigkeit des Fertigungsprozesses werden maschineninterne und sensorische Daten überwacht, ausgewertet und in den Prozess zurückgekoppelt. Daher kommt es auf die gezielte Kontrolle der entscheidenden Parameter mit möglichst wenigen und robusten Schnittstellen an. Im Rahmen eines ZIM-Kooperationsprojektes (Hochschule Reutlingen, Hema Frickenhausen, Pragmatic Minds Kirchheim) wurde dies für einen Bandsägeprozess erforscht und umgesetzt.
Die additive Fertigung hat sich in den vergangenen Jahren wesentlich weiter entwickelt. Dabei wurde die Prozesstechnologie, Anlagen und die Werkstoffe optimiert. Für die industrielle Anwendung auch bei größeren Stückzahlen in der flexiblen Fertigung fehlen noch automatisierte Lösungen für die gesamte Prozesskette. In diesem Beitrag werden Werkzeuge und Technologie für die Reinigung interner Strukturelemente dargestellt.
The functionality of existing cyber-physical production systems generally focuses on mapping technologic specifications derived from production requirements. Consequently, such systems base their conception on a structurally mechanistic paradigm. Insofar as these approaches have considered humans, their conception likewise is based on the structurally identical paradigm. Due to the fundamental reorientation towards explicitly human-centered approaches, the fact that essential aspects of the dimension "human" remain unconsidered by the previous paradigm becomes more and more apparent. To overcome such limitations, mapping the "social" dimension requires a structurally different approach. In this paper, an anthropocentric approach is developed based on possible conceptions of the human being, enabling a structural integration of the human being in an extended dimension. Through the model, extending concepts for better integration of the human being in the sense of human-centered approaches, as envisioned in the Industrie 5.0 conception, is possible.