The 10 most recently published documents
The replacement of conventional material with recyclates affects product personality, particularly regarding sustainability aspects influencing consumer behaviour. A definition of personality for products made of recyclates is missing in literature. As these products require appropriate aesthetics based on material origin to communicate the advantage concerning sustainability, there is a need for research in this regard. This paper aims to develop an adequate personality of a reusable water bottle made of ocean plastic by collecting personality traits that evoke associations related to the material's origin and sustainability. We conducted two quantitative field studies. Study 1 collected associated visual perceived attributes and context-related personality traits in order to develop and visualize a preliminary design. Study 2 evaluated the design regarding associated personality traits. The overall outcome was a product personality scale consisting of 23 items plus a concrete design recommendation for a water bottle made of recycled ocean plastic. The assessment of degree of sustainability was strongly influenced by participants’ associations with personal use, familiarity with usage and the factor of stability and resilience.
In recent years, 3D facial reconstructions from single images have garnered significant interest. Most of the approaches are based on 3D Morphable Model (3DMM) fitting to reconstruct the 3D face shape. Concurrently, the adoption of Generative Adversarial Networks (GAN) has been gaining momentum to improve the texture of reconstructed faces. In this paper, we propose a fundamentally different approach to reconstructing the 3D head shape from a single image by harnessing the power of GAN. Our method predicts three maps of normal vectors of the head’s frontal, left, and right poses. We are thus presenting a model-free method that does not require any prior knowledge of the object’s geometry to be reconstructed.
The key advantage of our proposed approach is the substantial improvement in reconstruction quality compared to existing methods, particularly in the case of facial regions that are self-occluded in the input image. Our method is not limited to 3d face reconstruction. It is generic and applicable to multiple kinds of 3D objects. To illustrate the versatility of our method, we demonstrate its efficacy in reconstructing the entire human body.
By delivering a model-free method capable of generating high-quality 3D reconstructions, this paper not only advances the field of 3D facial reconstruction but also provides a foundation for future research and applications spanning multiple object types. The implications of this work have the potential to extend far beyond facial reconstruction, paving the way for innovative solutions and discoveries in various domains.
The aim of this work is the development of artificial intelligence (AI) application to support the recruiting process that elevates the domain of human resource management by advancing its capabilities and effectiveness. This affects recruiting processes and includes solutions for active sourcing, i.e. active recruitment, pre-sorting, evaluating structured video interviews and discovering internal training potential. This work highlights four novel approaches to ethical machine learning. The first is precise machine learning for ethically relevant properties in image recognition, which focuses on accurately detecting and analysing these properties. The second is the detection of bias in training data, allowing for the identification and removal of distortions that could skew results. The third is minimising bias, which involves actively working to reduce bias in machine learning models. Finally, an unsupervised architecture is introduced that can learn fair results even without ground truth data. Together, these approaches represent important steps forward in creating ethical and unbiased machine learning systems.
Twitter and citations
(2023)
Social media, especially Twitter, plays an increasingly important role among researchers in showcasing and promoting their research. Does Twitter affect academic citations? Making use of Twitter activity about columns published on VoxEU, a renowned online platform for economists, we develop an instrumental variable strategy to show that Twitter activity about a research paper has a causal effect on the number of citations that this paper will receive. We find that the existence of at least one tweet, as opposed to none, increases citations by 16-25%. Doubling overall Twitter engagement boosts citations by up to 16%.
Die vorliegende Studie beschäftigt sich mit der Verbreitung des Customer-Success-Managements im deutschsprachigen Mittelstand und der Frage, wie eine erfolgreiche Implementierung dort durchgeführt werden kann. Die Ergebnisse zeigen, dass, vorgelagert zum eigentlichen Customer-Success-Management-Prozess, interne sowie externe Voraussetzungen im deutschsprachigen Mittelstand geschaffen werden müssen, um eine nachhaltige Implementierung gewährleisten zu können. Dazu zählt die Transformation vom reinen Produktfokus hin zu einer kunden- und servicezentrierten Unternehmensstrategie. Voraussetzung dafür ist die Erhöhung des Digitalisierungsgrads der Produkte und internen Prozesse sowie ein aktives Change-Management.
Der Erfolg der Energiewende in Deutschland setzt eine zunehmende Anzahl an dezentralen elektrischen Erzeugungsanlagen (EZA) voraus. Diese dezentralen EZA, wie Photovoltaikanlagen oder Blockheizkraftwerke, bringen für Verteilnetzbetreiber große Herausforderungen mit sich. Im Rahmen des geförderten Forschungsprojekts „Demonstrator Automatisierte Kabelverteil (KV) als Alternative zum regelbaren Ortsnetztransformator (DEMO rONT-Alternative)“ wurde ein neuer Ansatz für die Lösung der bestehenden Problematik erforscht. Dieser besteht in der aktiven Änderung der Topologie der Netzgebiete je nach elektrischer Last und PV-Einspeisung (Trennstellenverlagerung).
The 17 SDGs, as agreed upon by the international community, are designed to be implemented across all levels of human activity. Alongside the level of international politics, this also includes the local levels, national politics, wider society, and the economic sphere. Many channels are called on to further implementation, including the transfer of technology to developing and emerging countries. As the patent holders, this must include the active participation of companies. While the literature examines the important role of technology transfer in North-South business-to-business (B2B) partnerships, studies on the technology transfer between European and African companies are scarce. Therefore, in this study we use original data from 26 interviews conducted with managers engaged in sales partnerships between German manufacturers and their distributors in African markets to examine the existence and forms of technology transfer. We find that training and marketing excellence are the predominant forms of technology transfer and based on that suggest a refinement of established frameworks on B2B technology transfer.
Human recognition is an important part of perception systems, such as those used in autonomous vehicles or robots. These systems often use deep neural networks for this purpose, which rely on large amounts of data that ideally cover various situations, movements, visual appearances, and interactions. However, obtaining such data is typically complex and expensive. In addition to raw data, labels are required to create training data for supervised learning. Thus, manual annotation of bounding boxes, keypoints, orientations, or actions performed is frequently necessary. This work addresses whether the laborious acquisition and creation of data can be simplified through targeted simulation. If data are generated in a simulation, information such as positions, dimensions, orientations, surfaces, and occlusions are already known, and appropriate labels can be generated automatically. A key question is whether deep neural networks, trained with simulated data, can be applied to real data. This work explores the use of simulated training data using examples from the field of pedestrian detection for autonomous vehicles. On the one hand, it is shown how existing systems can be improved by targeted retraining with simulation data, for example to better recognize corner cases. On the other hand, the work focuses on the generation of data that hardly or not occur at all in real standard datasets. It will be demonstrated how training data can be generated by targeted acquisition and combination of motion data and 3D models, which contain finely graded action labels to recognize even complex pedestrian situations. Through the diverse annotation data that simulations provide, it becomes possible to train deep neural networks for a wide variety of tasks with one dataset. In this work, such simulated data is used to train a novel deep multitask network that brings together diverse, previously mostly independently considered but related, tasks such as 2D and 3D human pose recognition and body and orientation estimation.
In modern collaborative production environments where industrial robots and humans are supposed to work hand in hand, it is mandatory to observe the robot’s workspace at all times. Such observation is even more crucial when the robot’s main position is also dynamic e.g. because the system is mounted on a movable platform. As current solutions like physically secured areas in which a robot can perform actions potentially dangerous for humans, become unfeasible in such scenarios, novel, more dynamic, and situation aware safety solutions need to be developed and deployed.
This thesis mainly contributes to the bigger picture of such a collaborative scenario by presenting a data-driven convolutional neural network-based approach to estimate the two-dimensional kinematic-chain configuration of industrial robot-arms within raw camera images. This thesis also provides the information needed to generate and organize the mandatory data basis and presents frameworks that were used to realize all involved subsystems. The robot-arm’s extracted kinematic-chain can also be used to estimate the extrinsic camera parameters relative to the robot’s three-dimensional origin. Further a tracking system, based on a two-dimensional kinematic chain descriptor is presented to allow for an accumulation of a proper movement history which enables the prediction of future target positions within the given image plane. The combination of the extracted robot’s pose with a simultaneous human pose estimation system delivers a consistent data flow that can be used in higher-level applications.
This thesis also provides a detailed evaluation of all involved subsystems and provides a broad overview of their particular performance, based on novel generated, semi automatically annotated, real datasets.
Auf dem Weg zu einer neuen Normalität in Schule und Bildung?! : Empfehlungen der Beitragenden
(2023)
Die im vorliegenden Band präsentierten Studien und Erkenntnisse zeigen die tiefen Einschnitte, die die Pandemie in Schule und Bildung hinterlassen hat. Zahlreiche Forschende, Expertinnen und Experten, aber auch engagierte Eltern, Kinder und Jugendliche wünschen sich in Anbetracht der Erfahrungen eine „neue“ Normalität für Schule und Bildung – eine Normalität, in der Bildungsungerechtigkeit wirksamer begegnet wird, die digitaler ist, … Wie könnte der Weg dahin aussehen?