Refine
Document Type
- Journal article (33)
- Patent / Standard / Guidelines (3)
- Book (2)
- Book chapter (2)
- Conference proceeding (1)
- Working Paper (1)
Is part of the Bibliography
- yes (42)
Institute
- Life Sciences (42)
Publisher
- MDPI (7)
- Springer (7)
- Elsevier (5)
- Wiley (5)
- American Chemical Society (3)
- De Gruyter (3)
- SPIE. The International Society for Optical Engineering (2)
- Frontiers (1)
- Hanser (1)
- Hindawi (1)
To correctly assess the cleanliness of technical surfaces in a production process, corresponding online monitoring systems must provide sufficient data. A promising method for fast, large-area, and non-contact monitoring is hyperspectral imaging (HSI), which was used in this paper for the detection and quantification of organic surface contaminations. Depending on the cleaning parameter constellation, different levels of organic residues remained on the surface. Afterwards, the cleanliness was determined by the carbon content in the atom percent on the sample surfaces, characterized by XPS and AES. The HSI data and the XPS measurements were correlated, using machine learning methods, to generate a predictive model for the carbon content of the surface. The regression algorithms elastic net, random forest regression, and support vector machine regression were used. Overall, the developed method was able to quantify organic contaminations on technical surfaces. The best regression model found was a random forest model, which achieved an R2 of 0.7 and an RMSE of 7.65 At.-% C. Due to the easy-to-use measurement and the fast evaluation by machine learning, the method seems suitable for an online monitoring system. However, the results also show that further experiments are necessary to improve the quality of the prediction models.
The critical process parameters cell density and viability during mammalian cell cultivation are assessed by UV/VIS spectroscopy in combination with multivariate data analytical methods. This direct optical detection technique uses a commercial optical probe to acquire spectra in a label-free way without signal enhancement. For the cultivation, an inverse cultivation protocol is applied, which simulates the exponential growth phase by exponentially replacing cells and metabolites of a growing Chinese hamster ovary cell batch with fresh medium. For the simulation of the death phase, a batch of growing cells is progressively replaced by a batch with completely starved cells. Thus, the most important parts of an industrial batch cultivation are easily imitated. The cell viability was determined by the well-established method partial least squares regression (PLS). To further improve process knowledge, the viability has been determined from the spectra based on a multivariate curve resolution (MCR) model. With this approach, the progress of the cultivations can be continuously monitored solely based on an UV/VIS sensor. Thus, the monitoring of critical process parameters is possible inline within a mammalian cell cultivation process, especially the viable cell density. In addition, the beginning of cell death can be detected by this method which allows us to determine the cell viability with acceptable error. The combination of inline UV/VIS spectroscopy with multivariate curve resolution generates additional process knowledge complementary to PLS and is considered a suitable process analytical tool for monitoring industrial cultivation processes.
Die Erfindung betrifft eine Vorrichtung und Verfahren zur Analyse eines Materialstroms (S) mit einem Einlassbereich (E), einem Messbereich (M) und einen Auslassbereich (A) sowie mit einer ersten Weiche (W1) und einer zweiten Weiche (W2) und einem Umlenkbereich (U), wobei die beiden Weichen (W1, W2) in einem ersten Schaltzustand (Z1) einen durchgängigen ersten Materialdurchströmungsraum vom Einlassbereich (E) über die erste Weiche (W1) durch den Messbereich (M) über die zweite Weiche (W2) bis zum Auslassbereich (A) ausbilden und in einem zweiten Schaltzustand einen durchgängigen zweiten Materialdurchströmungsraum vom Einlassbereich (E) über die erste Weiche (W1) durch den Umlenkbereich (U) über die zweite Weiche (W2) bis zum Auslassbereich (A) ausbilden.
Metalworking fluids (MWFs) are widely used to cool and lubricate metal workpieces during processing to reduce heat and friction. Extending a MWF’s service life is of importance from both economical and ecological points of view. Knowledge about the effects of processing conditions on the aging behavior and reliable analytical procedures are required to properly characterize the aging phenomena. While so far no quantitative estimations of ageing effects on MWFs have been described in the literature other than univariate ones based on single parameter measurements, in the present study we present a simple spectroscopy-based set-up for the simultaneous monitoring of three quality parameters of MWF and a mathematical model relating them to the most influential process factors relevant during use. For this purpose, the effects of MWF concentration, pH and nitrite concentration on the droplet size during aging were investigated by means of a response surface modelling approach. Systematically varied model MWF fluids were characterized using simultaneous measurements of absorption coefficients µa and effective scattering coefficients µ’s. Droplet size was determined via dynamic light scattering (DLS) measurements. Droplet size showed non-linear dependence on MWF concentration and pH, but the nitrite concentration had no significant effect. pH and MWF concentration showed a strong synergistic effect, which indicates that MWF aging is a rather complex process. The observed effects were similar for the DLS and the µ’s values, which shows the comparability of the methodologies. The correlations of the methods were R2c = 0.928 and R2P = 0.927, as calculated by a partial least squares regression (PLS-R) model. Furthermore, using µa, it was possible to generate a predictive PLS-R model for MWF concentration (R2c = 0.890, R2P = 0.924). Simultaneous determination of the pH based on the µ’s is possible with good accuracy (R²c = 0.803, R²P = 0.732). With prior knowledge of the MWF concentration using the µa-PLS-R model, the predictive capability of the µ’s-PLS-R model for pH was refined (10 wt%: R²c = 0.998, R²p = 0.997). This highlights the relevance of the combined measurement of µa and µ’s. Recognizing the synergistic nature of the effects of MWF concentration and pH on the droplet size is an important prerequisite for extending the service life of an MWF in the metalworking industry. The presented method can be applied as an in-process analytical tool that allows one to compensate for ageing effects during use of the MWF by taking appropriate corrective measures, such as pH correction or adjustment of concentration.
Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe.
We report on the reflectance, transmittance and fluorescence spectra (λ=200–1200nm) of four types of chicken eggshells (white, brown, light green, dark green) measured in situ without pretreatment and after ablation of 20–100 μm of the outer shell regions. The color pigment protoporphyrin IX (PPIX) is embedded in the protein phase of all four shell types as highly fluorescent monomers, in the white and light green shells additionally as non-fluorescent dimers, and in the brown and dark green shells mainly as non-fluorescent poly-aggregates. The green shell colors are formed from an approximately equimolar mixture of PPIX and biliverdin. The axial distribution of protein and color pigments were evaluated from the combined reflectances of both the outer and inner shell surfaces, as well as from the transmittances. For the data generation we used the radiative transfer model in the random walk and Kubelka-Munk approaches.
The detection and characterisation of oxide layers on metallic copper samples plays an important role for power electronic modules in the automotive industry. However, since precise identification of oxide layers by visual inspection is difficult and time consuming due to inhomogeneous colour distribution, a reliable and efficient method for estimating their thickness is needed. In this study, hyperspectral imaging in the visible wavelength range (425–725 nm) is proposed as an in-line inspection method for analysing oxide layers in real-time during processing of copper components such as printed circuit boards in the automotive industry. For implementation in the production line a partial least square regression (PLSR) model was developed with a calibration set of n = 12 with about 13,000 spectra per sample to determine the oxide layer thickness on top of the technical copper surfaces. The model shows a good prediction performance in the range of 0–30 nm compared to Auger electron spectroscopy depth profiles as a reference method. The root mean square error (RMSE) is 1.75 nm for calibration and 2.70 nm for full cross validation. Applied to an external dataset of four new samples with about 13,000 spectra per sample the model provides an RMSE of 1.84 nm for prediction and demonstrates the robustness of the model during real-time processing. The results of this study prove the ability and usefulness of the proposed method to estimate the thickness of oxide layers on technical copper. Hence, the application of hyperspectral imaging for the industrial process control of electronic devices is very promising.
Some widely used optical measurement systems require a scan in wavelength or in one spatial dimension to measure the topography in all three dimensions. Novel hyperspectral sensors based on an extended Bayer pattern have a high potential to solve this issue as they can measure three dimensions in a single shot. This paper presents a detailed examination of a hyperspectral sensor including a description of the measurement setup. The evaluated sensor (Ximea MQ022HG-IM-SM5X5-NIR) offers 25 channels based on Fabry–Pérot filters. The setup illuminates the sensor with discrete wavelengths under a specified angle of incidence. This allows characterization of the spatial and angular response of every channel of each macropixel of the tested sensor on the illumination. The results of the characterization form the basis for a spectral reconstruction of the signal, which is essential to obtain an accurate spectral image. It turned out that irregularities of the signal response for the individual filters are present across the whole sensor.
A new two-dimensional fluorescence sensor system was developed for in-line monitoring of mammalian cell cultures. Fluorescence spectroscopy allows for the detection and quantification of naturally occurring intra- and extracellular fluorophores in the cell broth. The fluorescence signals correlate the the cells' current redox state and other relevant process parameters. Cell culture pretests with twelve different excitation wavelengths showed that only three wavelengths account for a vast majority of spectral variation. Accordingly, the newly developed device utilizes three high-power LEDs as excitation sources in combination with a back-thinned CCD-spectrometer for fluorescence detection.
"Optofluidics : Process Analytical Technology" offers in its 2nd edition a distinctive foundational introduction to the realms of materials, photonics, fluidics, and sensors. The work serves to unify the disparate disciplines, integrating the requisite fundamental knowledge with applied science. It thus establishes a new standard and definition for both the academic and industrial fields.
It encompasses the requisite in-depth knowledge of smart materials, semiconductor processing, optical waveguiding and fluid dynamics. The objective of this distinctive publication is to present information in a readily comprehensible format that can be readily applied in everyday situations. It is truly interdisciplinary but not overloading with information, providing the highly required and relevant information to become an expert in this exciting area, which is gaining more and more relevance and recognition in the context of sensing, material science and automation in biotechnology and pharmaceutical manufacturing.
The concept of the book is to serve as a textbook for advanced beginners from all life science, engineering and physics disciplines, providing self-assessment questions and further reading recommendations for further guidance and in-depth learning.