Refine
Document Type
- Conference proceeding (18)
- Journal article (3)
Language
- English (21)
Is part of the Bibliography
- yes (21)
Institute
Publisher
- IEEE (15)
- SciTePress (2)
- EPubli (1)
- International Federation of Automatic Control (1)
- LIT Verlag (1)
- Science and Technology Publications (1)
The EU funded project RobLog recently developed a system able to autonomously unload coffee sacks from a standard container. Being the first of its kind, a further development is needed in order for the system to be competitive against manual labor. Financing this development entails a risk, hence a justified skepticism, which can be overcome by the longsighted view of the existing market potential. This paper presents a method to estimate the market potential of autonomous unloading systems for heavy deformable goods. Starting from the analysis of the coffee trade, first the current coffee traffic is investigated in order to calculate the number of autonomous systems needed to handle the imported sacks; Results are validated and the method is extended for the calculation of the potential of other market segments, where the same unloading technology can be applied.
The success of an autonomous robotic system is influenced by several not easily identifiable interdependent factors. This paper is set to lay the foundation of an integrated approach in order to examine all the parameters and understand their contribution to success. After introducing the problem, two autonomous systems for the process of unloading of containers are presented. Then a recently developed method for modelling and interpreting all the parameters, the STIC analysis, are introduced. The preliminary results of applying such a methodology to a first study case is shortly presented. Future research is in the end recommended in order to prove that this methodology is the only way to overcome barriers to the investment in autonomous systems in the logistics sector.
Milk-run systems are becoming more and more popular when it comes to in-plant material supply. Planning and dimensioning such a system poses challenges, which are difficult to overcome, especially in scenarios characterized by a large number of hard constraints and by well-established processes. This paper is set to ease the task of the planner by presenting an innovative flexible method for the planning and dimensioning of in-plant milk-run systems in high constrained scenarios. After an overview on tugger train systems and existing planning methods, an extensive description of the new method will be given. The new method proposed will be critically analyzed and discussed before suggesting forthcoming research.
The high system flexibility necessary for the full automation of complex and unstructured tasks leads to increased complexity, thus higher costs. On the other hand, the effectiveness and performance of such systems decrease, explaining the unfulfilled potential of robotcs in sectors such as intralogistics, where the benefits of a robotic solution rarely justify its costs. Taking the distance from the false idea that a task should be either fully automated, or fully manual, this aper presents a method for design of a lean human-robot interaction (HRI) withe the objective of the "right level of automation", where functions are divided among human and automated agends, so that the overall process gains in performances and/or costs. ... The 10 progressive steps of the method are presented and discussed with reference to their graphical tool: the House of Quality Interaction.
The appeal of a forklift-free shop floor is pushing enterprises towards lean logistic systems and tugger trains are becoming popular means of supply in intensive material handling production systems. Planning a tugger train system is a complex task influenced by a large set of interrelated parameters. The only standard available to help the planner in designing the tugger train logistic system is the draft norm VDI 5586 (April 2016). However this norm is only applicable under a set of restricting assumptions. In this paper a methodology to complement the approach proposed by the VDI is introduced and then applied to a numerical example. The results are briefly presented and discussed before suggesting forthcoming research.
The high system flexibility necessary for the full automation of complex and unstructured tasks leads to increased technological complexity, thus to higher costs and lower performance. In this paper, after an introduction to the different dimensions of flexibility, a method for flexible modular configuration and evaluation of systems of systems is introduced. The method starts from process requirements and, considering factors such as feasibility, development costs, market potential and effective impact on the current processes, enables the evaluation of a flexible systems of systems equipped with the needed functionalities before its actual development. This allows setting the focus on those aspects of flexibility that add market value to the system, thus promoting the efficient development of systems addressed to interested customers in intralogistics. An example of application of the method is given and discussed.
Latest advancements in new technologies have made it possible to fully automate the in-plant material flow of small load carriers between the warehouse and the production or assembly line. However, none of methods available in literature fully addresses the planning and dimensioning problem of a logistic system based on these new autonomous technologies. This paper is set to present a method to estimate the fleet size of the new logistic system. After an overview on the state of the art, the method based on combinatorics and probability theory will be explained. A short discussion and suggestions for forthcoming research will conclude the paper.
In standardized sectors such as the automotive, the cost-benefit ratio of automation solutions is high as they contribute to increase capacity, decrease costs and improve product quality. In less standardized application fields, the contribution of automation to improvements in capacity, cost and quality blurs. The automation of complex and unstructured tasks requires sophisticated, expensive and low-performing systems, whose impact on product quality is oftentimes not directly perceived by customers. As a result, the full automation of process chains in the general manufacturing or the logistic sectors is often a sub optimal solution. Taking the distance from the false idea that a process should be either fully automated, or fully manual, this paper presents a novel heuristic method for design of lean human-robot interaction, the Quality Interaction Function Deployment, with the objective of the “right level of automation”. Functions are divided among human and automated agents and several automation scenarios are created and evaluated with respect to their compliance to the requirements of all process´ stakeholders. As a result, synergies among operators (manual tasks) and machines (automated tasks) are improved, thus reducing time-losses and increasing productivity.
Powered by e-commerce and vital in the manufacturing industry, intralogistics became an increasingly important and labour-intensive process. In highly standardized automation-friendly environments, such as the automotive sector, most of efficiently automatable intralogistics tasks have already been automated. Due to aging population in EU and ergonomic regulations, the urge to automate intralogistics tasks became consistent also where product and process standardization is lower. That is the case of the production line or cell material supply process, where an increasing number of product variants and individually customized products combined with the necessary ability of reacting to changes in market conditions led to smaller and more frequent replenishment to the points of use in the production plant and to the chaotic addition of production cells in shop floor layout. This led in turn to inevitable traffic growth with unforeseeable related delays and increased level of safety threats and accidents. In this paper, we use the structured approach of the Quality Interaction Function Deployment to analyse the process of supply of assembly lines, seeking the most efficient combination of automation and manual labour, satisfying all stakeholders´ requirements. Results are presented and discussed.
This article discusses the scientifically and industrially important problem of automating the process of unloading goods from standard shipping containers. We outline some of the challenges barring further adoption of robotic solutions to this problem, ranging from handling a vast variety of shapes, sizes, weights, appearances, and packing arrangements of the goods, through hard demands on unloading speed and reliability, to ensuring that fragile goods are not damaged. We propose a modular and reconfigurable software framework in an attempt to efficiently address some of these challenges. We also outline the general framework design and the basic functionality of the core modules developed. We present two instantiations of the software system on two different fully integrated demonstrators: 1) coping with an industrial scenario, i.e., the automated unloading of coffee sacks with an already economically interesting performance; and 2) a scenario used to demonstrate the capabilities of our scientific and technological developments in the context of medium- to long-term prospects of automation in logistics. We performed evaluations that allowed us to summarize several important lessons learned and to identify future directions of research on autonomous robots for the handling of goods in logistics applications.