Refine
Document Type
- Conference Proceeding (35)
- Article (3)
- Part of a Book (2)
Is part of the Bibliography
- yes (40)
Institute
- Informatik (40)
Publisher
Big Data und Cloud Systeme werden zunehmend von mobilen, benutzerzentrierten und agil veränderbaren Informationssystemen im Kontext von digitalen sozialen Netzwerken genutzt. Metaphern aus der Biologie für lebendige und selbstheilende Systeme und Umgebungen liefern die Basis für intelligente adaptive Informationssysteme und für zugehörige serviceorientierte digitale Unternehmensarchitekturen. Wir berichten über unsere Forschungsarbeiten über Strukturen und Mechanismen adaptiver digitaler Unternehmensarchitekturen für die Entwicklung und Evolution von serviceorientierten Ökosystemen und deren Technologien wie Big Data, Services & Cloud Computing, Web Services und Semantikunterstützung. Für unsere aktuellen Forschungsarbeiten nutzen wir praxisrelevante SmartLife Szenarien für die Entwicklung, Wartung und Evolution zukunftsgerechter serviceorientierter Informationssysteme. Diese Systeme nutzen eine stark wachsende Zahl externer und interner Services und fokussieren auf die Besonderheiten der Weiterentwicklung der Informationssysteme für integrierte Big Data und Cloud Kontexte. Unser Forschungsansatz beschäftigt sich mit der systematischen und ganzheitlichen Modellbildung adaptiver digitaler Unternehmensarchitekturen - gemäß standardisierter Referenzmodelle und auf Standards aufsetzenden Referenzarchitekturen, die für besondere Einsatzszenarien auch bei kleineren Anwendungskontexten oder an neue Kontexte einfacher adaptiert werden können. Um Semantik-gestützte Analysen zur Entscheidungsunterstützung von System- und Unternehmensarchitekten zu ermöglichen, erweitern wir unser bisheriges Referenzmodell für ITUnternehmensarchitekturen ESARC – Enterprise Services Architecture Reference Cube – um agile Mechanismen der Adaption und Konsistenzbehandlung sowie die zugehörigen Metamodelle und Ontologien für Digitale Enterprise Architekturen um neue Aspekte wie Big Data und Cloud Kontexte.
Der lokale Bekleidungseinzelhandel steht unter immer stärkerem Konkurrenzdruck durch Versandunternehmen. Zusätzlich bestehen durch gewachsene Architekturen eine Reihe von Wachstumshemmnissen. Daher sollen hier eine Reihe von Ansätzen zur Gestaltung datenzentrierter Unternehmensarchitekturen für den Bekleidungseinzelhandel vorgestellt werden. Sie basieren auf dem Einsatz von RFID zur Gewinnung von Kundenprofilen in den Niederlassungen und dem Einsatz von Big-Data basierten Auswertungs- und Analysemechanismen. Mit den vorgestellten Konzepten ist es Unternehmen des Bekleidungseinzelhandels möglich, ähnlich wie Versandunternehmen, individuelle Ansprachen des Kunden und Angebote zu entwickeln
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology and enterprise systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates collaborative decision mechanisms for adaptive digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support.
Artificial Intelligence enables innovative applications, and applications based on Artificial Intelligence are increasingly important for all aspects of the Digital Economy. However, the question of how AI resources such as tools and data can be linked to provide an AI-capability and create business value is still open. Therefore, this paper identifies the value-creating mechanisms of connectionist artificial intelligence using a capability-oriented view and points out the connections to different kinds of business value. The analysis supports an agenda that identifies areas that need further research to understand the mechanism of value creation in connectionist artificial intelligence.
Digital technologies are main strategic drivers for digitalization and offer ubiquitous data availability, unlimited connectivity, and massive processing power for a fundamentally changing business. This leads to the development and application of intelligent digital systems. The current state of research and practice of architecting digital systems and services lacks a solid methodological foundation that fully accommodates all requirements linked to efficient and effective development of digital systems in organizations. Research presented in this paper addresses the question, how management of complexity in digital systems and architectures can be supported from a methodological perspective. In this context, the current focus is on a better understanding of the causes of increased complexity and requirements to methodological support. For this purpose, we take an enterprise architecture perspective, i.e. how the introduction of digital systems affects the complexity of EA. Two industrial case studies and a systematic literature analysis result in the proposal of an extended Digital Enterprise Architecture Cube as framework for future methodical support.
Data analysis is becoming increasingly important to pursue organizational goals, especially in the context of Industry 4.0, where a wide variety of data is available. Here numerous challenges arise, especially when using unstructured data. However, this subject has not been focused by research so far. This research paper addresses this gap, which is interesting for science and practice as well. In a study three major challenges of using unstructured data has been identified: analytical know-how, data issues, variety. Additionally, measures how to improve the analysis of unstructured data in the industry 4.0 context are described. Therefore, the paper provides empirical insights about challenges and potential measures when analyzing unstructured data. The findings are presented in a framework, too. Hence, next steps of the research project and future research points become apparent.
Digitization fosters the development of IT environments with many rather small structures, like Internet of Things (IoT), microservices, or mobility systems. They are needed to support flexible and agile digitized products and services. The goal is to create service-oriented enterprise architectures (EA) that are self optimizing and resilient. The present research paper investigates methods for decision-making concerning digitization architectures for Internet of Things and microservices. They are based on evolving enterprise architecture reference models and state of the art elements for architectural engineering for microgranular systems. Decision analytics in this field becomes increasingly complex and decision support, particularly for the development and evolution of sustainable enterprise architectures, is sorely needed. The challenging of the decision processes can be supported with in a more flexible and intuitive way by an architecture management cockpit.
Intelligent systems and services are the strategic targets of many current digitalization efforts and part of massive digital transformations based on digital technologies with artificial intelligence. Digital platform architectures and ecosystems provide an essential base for intelligent digital systems. The paper raises an important question: Which development paths are induced by current innovations in the field of artificial intelligence and digitalization for enterprise architectures? Digitalization disrupts existing enterprises, technologies, and economies and promotes the architecture of cognitive and open intelligent environments. This has a strong impact on new opportunities for value creation and the development of intelligent digital systems and services. Digital technologies such as artificial intelligence, the Internet of Things, service computing, cloud computing, blockchains, big data with analysis, mobile systems, and social business network systems are essential drivers of digitalization. We investigate the development of intelligent digital systems supported by a suitable digital enterprise architecture. We present methodological advances and an evolutionary path for architectures with an integral service and value perspective to enable intelligent systems and services that effectively combine digital strategies and digital architectures with artificial intelligence.
Business process models provide a considerable number of benefits for enterprises and organizations, but the creation of such models is costly and time-consuming, which slows down the organizational adoption of business process modeling. Social paradigms pave new ways for business process modeling by integrating stakeholders and leveraging knowledge sources. However, empirical research about the impact of social paradigms on costs of business process modeling is sparse. A better understanding of their impact could help to reduce the cost of business process modeling and improve decision-making on BPM activities. The paper constributes to this field by reporting about an empirical investigation via survey research on the perceived influence of different cost factors among experts. Our results indicate that different cost components, as well as the use of social paradigms, influence cost.
Predictive maintenance information systems: the underlying conditions and technological aspects
(2020)
Predictive maintenance has the potential to improve the reliability of production and service provisioning. However, there is little knowledge about the proper implementation of predictive maintenance in research and practice. Therefore, we conducted a multi-case study and investigated underlying conditions and technological aspects for implementing a predictive maintenance system and where it leads to. We found that predictive maintenance initiatives are triggered by severe impacts of failures on revenue and profit. Furthermore, successful predictive maintenance initiatives require that pre-conditions are fulfilled: Data must be available and accessible. Very important is also the support by the management. We identified four factors important for the implementation of predictive maintenance. The integration of data is highly facilitated by Cloud-based mechanisms. The detection of events is enabled by advanced analytics. The execution of predictive maintenance operations is supported by data-driven process automation and visualization.