Refine
Document Type
- Conference proceeding (40)
- Journal article (6)
- Book chapter (2)
Is part of the Bibliography
- yes (48)
Institute
- Informatik (48)
Publisher
- Springer (24)
- Gesellschaft für Informatik (7)
- IEEE (5)
- RWTH Aachen (3)
- Association for Information Systems (2)
- IGI Global (2)
- Elsevier (1)
- Emerald (1)
- Riga Technical University Press (1)
- SciTePress (1)
Energy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived.
The digital transformation of our life changes the way we work, learn, communicate, and collaborate. Enterprises are presently transforming their strategy, culture, processes, and their information systems to become digital. The digital transformation deeply disrupts existing enterprises and economies. Digitization fosters the development of IT systems with many rather small and distributed structures, like Internet of Things, Microservices and mobile services. Since years a lot of new business opportunities appear using the potential of services computing, Internet of Things, mobile systems, big data with analytics, cloud computing, collaboration networks, and decision support. Biological metaphors of living and adaptable ecosystems provide the logical foundation for self optimizing and resilient run-time environments for intelligent business services and adaptable distributed information systems with service oriented enterprise architectures. This has a strong impact for architecting digital services and products following both a value-oriented and a service perspective. The change from a closed world modeling world to a more flexible open-world composition and evolution of enterprise architectures defines the moving context for adaptable and high distributed systems, which are essential to enable the digital transformation. The present research paper investigates the evolution of Enterprise Architecture considering new defined value-oriented mappings between digital strategies, digital business models and an improved digital enterprise architecture.
Excellence in IT is both a driver and a key enabler of the digital transformation. The digital transformation changes the way we live, work, learn, communicate, and collaborate. The Internet of Things (IoT) fundamentally influences today’s digital strategies with disruptive business operating models and fast changing markets. New business information systems are integrating emerging Internet of Things infrastructures and components. With the huge diversity of Internet of Things technologies and products organizations have to leverage and extend previous Enterprise Architecture efforts to enable business value by integrating Internet of Things architectures. Both architecture engineering and management of current information systems and business models are complex and currently integrating beside the Internet of Things synergistic subjects, like Enterprise Architecture in context with services & cloud computing, semantic-based decision support through ontologies and knowledge-based systems, big data management, as well as mobility and collaboration networks. To provide adequate decision support for complex business/IT environments, we have to make transparent the impact of business and IT changes over the integral landscape of affected architectural capabilities, like directly and transitively impacted IoT-objects, business categories, processes, applications, services, platforms and infrastructures. The paper describes a new metamodel-based approach for integrating Internet of Things architectural objects, which are semi-automatically federated into a holistic Digital Enterprise Architecture environment.
Data analysis is becoming increasingly important to pursue organizational goals, especially in the context of Industry 4.0, where a wide variety of data is available. Here numerous challenges arise, especially when using unstructured data. However, this subject has not been focused by research so far. This research paper addresses this gap, which is interesting for science and practice as well. In a study three major challenges of using unstructured data has been identified: analytical know-how, data issues, variety. Additionally, measures how to improve the analysis of unstructured data in the industry 4.0 context are described. Therefore, the paper provides empirical insights about challenges and potential measures when analyzing unstructured data. The findings are presented in a framework, too. Hence, next steps of the research project and future research points become apparent.
Digitization of societies changes the way we live, work, learn, communicate, and collaborate. In the age of digital transformation IT environments with a large number of rather small structures like Internet of Things (IoT), microservices, or mobility systems are emerging to support flexible and agile digitized products and services. Adaptable ecosystems with service oriented enterprise architectures are the foundation for self-optimizing, resilient run-time environments and distributed information systems. The resulting business disruptions affect almost all new information processes and systems in the context of digitization. Our aim are more flexible and agile transformations of both business and information technology domains with more flexible enterprise information systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates mechanisms for decision-controlled digitization architectures for Internet of Things and microservices by evolving enterprise architecture reference models and state of the art elements for architectural engineering for micro-granular systems.
Presently, many companies are transforming their strategy and product base, as well as their culture, processes and information systems to become more digital or to approach for a digital leadership. In the last years new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, edge and fog computing, social networks, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT environments with many rather small and distributed structures, like the Internet of Things, Microservices, or other micro-granular elements. This has a strong impact for architecting digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of micro-granular system architectures defines the moving context for adaptable systems. We are focusing on a continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, as part of a new digital enterprise architecture for service dominant digital products.
Digitization is more than using digital technologies to transfer data and perform computations and tasks. Digitization embraces disruptive effects of digital technologies on economy and society. To capture these effects, two perspectives are introduced, the product and the value-creation perspective. In the product perspective, digitization enables the transition from material, static products to interactive and configurable services. In the value-creation perspective, digitization facilitates the transition from centralized, isolated models of value creation, to bidirectional, co-creation oriented approaches of value creation.
Social networks, smart portable devices, Internet of Things (IoT) on base of technologies like analytics for big data and cloud services are emerging to support flexible connected products and agile services as the new wave of digital transformation. Biological metaphors of living and adaptable ecosystems with service-oriented enterprise architectures provide the foundation for self-optimizing and resilient run-time environments for intelligent business services and related distributed information systems. We are extending Enterprise Architecture (EA) with mechanisms for flexible adaptation and evolution of information systems having distributed IoT and other micro-granular digital architecture to support next digitization products, services, and processes. Our aim is to support flexibility and agile transformation for both IT and business capabilities through adaptive digital enterprise architectures. The present research paper investigates additionally decision mechanisms in the context of multi-perspective explorations of enterprise services and Internet of Things architectures by extending original enterprise architecture reference models with state of art elements for architectural engineering and digitization.
Business process models provide a considerable number of benefits for enterprises and organizations, but the creation of such models is costly and time-consuming, which slows down the organizational adoption of business process modeling. Social paradigms pave new ways for business process modeling by integrating stakeholders and leveraging knowledge sources. However, empirical research about the impact of social paradigms on costs of business process modeling is sparse. A better understanding of their impact could help to reduce the cost of business process modeling and improve decision-making on BPM activities. The paper constributes to this field by reporting about an empirical investigation via survey research on the perceived influence of different cost factors among experts. Our results indicate that different cost components, as well as the use of social paradigms, influence cost.
Big Data und Cloud Systeme werden zunehmend von mobilen, benutzerzentrierten und agil veränderbaren Informationssystemen im Kontext von digitalen sozialen Netzwerken genutzt. Metaphern aus der Biologie für lebendige und selbstheilende Systeme und Umgebungen liefern die Basis für intelligente adaptive Informationssysteme und für zugehörige serviceorientierte digitale Unternehmensarchitekturen. Wir berichten über unsere Forschungsarbeiten über Strukturen und Mechanismen adaptiver digitaler Unternehmensarchitekturen für die Entwicklung und Evolution von serviceorientierten Ökosystemen und deren Technologien wie Big Data, Services & Cloud Computing, Web Services und Semantikunterstützung. Für unsere aktuellen Forschungsarbeiten nutzen wir praxisrelevante SmartLife Szenarien für die Entwicklung, Wartung und Evolution zukunftsgerechter serviceorientierter Informationssysteme. Diese Systeme nutzen eine stark wachsende Zahl externer und interner Services und fokussieren auf die Besonderheiten der Weiterentwicklung der Informationssysteme für integrierte Big Data und Cloud Kontexte. Unser Forschungsansatz beschäftigt sich mit der systematischen und ganzheitlichen Modellbildung adaptiver digitaler Unternehmensarchitekturen - gemäß standardisierter Referenzmodelle und auf Standards aufsetzenden Referenzarchitekturen, die für besondere Einsatzszenarien auch bei kleineren Anwendungskontexten oder an neue Kontexte einfacher adaptiert werden können. Um Semantik-gestützte Analysen zur Entscheidungsunterstützung von System- und Unternehmensarchitekten zu ermöglichen, erweitern wir unser bisheriges Referenzmodell für ITUnternehmensarchitekturen ESARC – Enterprise Services Architecture Reference Cube – um agile Mechanismen der Adaption und Konsistenzbehandlung sowie die zugehörigen Metamodelle und Ontologien für Digitale Enterprise Architekturen um neue Aspekte wie Big Data und Cloud Kontexte.