Refine
Document Type
- Conference proceeding (40)
- Journal article (7)
- Book chapter (2)
Is part of the Bibliography
- yes (49)
Institute
- Informatik (49)
Publisher
- Springer (25)
- Gesellschaft für Informatik (7)
- IEEE (5)
- RWTH Aachen (3)
- Association for Information Systems (2)
- IGI Global (2)
- Elsevier (1)
- Emerald (1)
- Riga Technical University Press (1)
- SciTePress (1)
Energy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived.
Purpose
In recognising the key role of business intelligence and big data analytics in influencing companies’ decision-making processes, this paper aims to codify the main phases through which companies can approach, develop and manage big data analytics.
Design/methodology/approach
By adopting a research strategy based on case studies, this paper depicts the main phases and challenges that companies “live” through in approaching big data analytics as a way to support their decision-making processes. The analysis of case studies has been chosen as the main research method because it offers the possibility for different data sources to describe a phenomenon and subsequently to develop and test theories.
Findings
This paper provides a possible depiction of the main phases and challenges through which the approach(es) to big data analytics can emerge and evolve over time with reference to companies’ decision-making processes.
Research limitations/implications
This paper recalls the attention of researchers in defining clear patterns through which technology-based approaches should be developed. In its depiction of the main phases of the development of big data analytics in companies’ decision-making processes, this paper highlights the possible domains in which to define and renovate approaches to value. The proposed conceptual model derives from the adoption of an inductive approach. Despite its validity, it is discussed and questioned through multiple case studies. In addition, its generalisability requires further discussion and analysis in the light of alternative interpretative perspectives.
Practical implications
The reflections herein offer practitioners interested in company management the possibility to develop performance measurement tools that can evaluate how each phase can contribute to companies’ value creation processes.
Originality/value
This paper contributes to the ongoing debate about the role of digital technologies in influencing managerial and social models. This paper provides a conceptual model that is able to support both researchers and practitioners in understanding through which phases big data analytics can be approached and managed to enhance value processes.
Der Einsatz von Daten mit unterschiedlicher Struktur zur Fehleranalyse in der Produktion ist eine große Herausforderung für Industrieunternehmen. Dieser Artikel zeigt einen prototypischen Lösungsweg auf, wie die Integration von unterschiedlich strukturierten Daten zur Fehleranalyse gelingen kann. Anhand eines Fallbeispiels wird ein Prototyp konzipiert und umgesetzt, der verschiedene Verfahren zur Analyse von Daten unterschiedlicher Struktur kombiniert und die spezifischen Anforderungen in der datengetriebenen Produktionsfehleranalyse adressieren kann. Das Ergebnis zeigt eine innovative Möglichkeit zur datengetriebenen Fehleranalyse für die Produktion, in der unterschiedlich strukturierte Daten eingesetzt und verschiedene Analyseverfahren miteinander nutzendstiftend verbunden sind. Die Evaluation durch Experten zeigt ferner, dass der vorgeschlagene prototypische Lösungsweg für den Einsatz in der Praxis geeignet ist und einen Mehrwert für Unternehmen stiften kann. Aufbauend auf diesen Erkenntnissen werden Implikationen benannt, Limitationen aufgezeigt und zukünftiger Forschungsbedarf abgeleitet.
Der lokale Bekleidungseinzelhandel steht unter immer stärkerem Konkurrenzdruck durch Versandunternehmen. Zusätzlich bestehen durch gewachsene Architekturen eine Reihe von Wachstumshemmnissen. Daher sollen hier eine Reihe von Ansätzen zur Gestaltung datenzentrierter Unternehmensarchitekturen für den Bekleidungseinzelhandel vorgestellt werden. Sie basieren auf dem Einsatz von RFID zur Gewinnung von Kundenprofilen in den Niederlassungen und dem Einsatz von Big-Data basierten Auswertungs- und Analysemechanismen. Mit den vorgestellten Konzepten ist es Unternehmen des Bekleidungseinzelhandels möglich, ähnlich wie Versandunternehmen, individuelle Ansprachen des Kunden und Angebote zu entwickeln
The Internet of Things (IoT) fundamentally influences today’s digital strategies with disruptive business operating models and fast changing markets. New business information systems are integrating emerging Internet of Things infrastructures and components. With the huge diversity of Internet of Things technologies and products organizations have to leverage and extend previous enterprise architecture efforts to enable business value by integrating the Internet of Things into their evolving Enterprise Architecture Management environments. Both architecture engineering and management of current enterprise architectures is complex and has to integrate beside the Internet of Things synergistic disciplines like EAM - Enterprise Architecture and Management with disciplines like: services & cloud computing, semantic-based decision support through ontologies and knowledge-based systems, big data management, as well as mobility and collaboration networks. To provide adequate decision support for complex business/IT environments, it is necessary to identify affected changes of Internet of Things environments and their related fast adapting architecture. We have to make transparent the impact of these changes over the integral landscape of affected EAM-capabilities, like directly and transitively impacted IoT-objects, business categories, processes, applications, services, platforms and infrastructures. The paper describes a new metamodel-based approach for integrating partial Internet of Things objects, which are semi-automatically federated into a holistic Enterprise Architecture Management environment.
Modern enterprises reshape and transform continuously by a multitude of management processes with different perspectives. They range from business process management to IT service management and the management of the information systems. Enterprise Architecture (EA) management seeks to provide such a perspective and to align the diverse management perspectives. Therefore, EA management cannot rely on hierarchic - in a tayloristic manner designed - management processes to achieve and promote this alignment. It, conversely, has to apply bottom-up, information-centered coordination mechanisms to ensure that different management processes are aligned with each other and enterprise strategy. Social software provides such a bottom-up mechanism for providing support within EAM-processes. Consequently, challenges of EA management processes are investigated, and contributions of social software presented. A cockpit provides interactive functions and visualization methods to cope with this complexity and enable the practical use of social software in enterprise architecture management processes.
In current times, a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Enterprises are presently transforming their strategy, culture, processes, and their information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Digitization fosters the development of IT environments with many rather small and distributed structures, like Internet of Things. This has a strong impact for architecting digital services and products. The change from a closed-world modeling perspective to more flexible open-world and living software and system architectures defines the moving context for adaptable and evolutionary software approaches, which are essential to enable the digital transformation. In this paper, we are putting a spotlight to service oriented software evolution to support the digital transformation with micro granular digital architectures for digital services and products.
The Internet of Things (IoT), enterprise social networks, adaptive case management, mobility systems, analytics for big data, and cloud services environments are emerging to support smart connected products and services and the digital transformation. Biological metaphors of living and adaptable ecosystems with service oriented enterprise architectures provide the foundation for self-optimizing and resilient run-time environments for intelligent business services and related distributed information systems. We are investigating mechanisms for flexible adaptation and evolution for the next digital enterprise architecture systems in the context of the digital transformation. Our aim is to support flexibility and agile transformation for both business and related enterprise systems through adaptation and dynamical evolution of digital enterprise architectures. The present research paper investigates mechanisms for decision case management in the context of multi-perspective explorations of enterprise services and Internet of Things architectures by extending original enterprise architecture reference models with state of art elements for architectural engineering for the digitization and architectural decision support.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like microservices and the Internet of Things, as part of a new digital enterprise architecture. To integrate micro granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitization of products, services, and processes.
Digital enterprise architecture management in tourism : state of the art and future directions
(2018)
The advance of information technology impacts tourism more than many other industries, due to the service character of its products. Most offerings in tourism are immaterial in nature and challenging in coordination. Therefore, the alignment of IT and strategy and digitization is of crucial importance to enterprises in tourism. To cope with the resulting challenges, methods for the management of enterprise architectures are necessary. Therefore, we scrutinize approaches for managing enterprise architectures based on a literature research. We found many areas for future research on the use of enterprise architecture in tourism.