Refine
Document Type
- Conference proceeding (39)
- Journal article (6)
- Book chapter (2)
Is part of the Bibliography
- yes (47)
Institute
- Informatik (47)
Publisher
- Springer (23)
- Gesellschaft für Informatik e.V (5)
- IEEE (5)
- RWTH Aachen (3)
- Association for Information Systems (2)
- Gesellschaft für Informatik (2)
- IGI Global (2)
- Elsevier (1)
- Emerald (1)
- Riga Technical University Press (1)
Energy consumption aspects of machine learning classifiers are important for research and practice as well. Due to sparse research in this area, a prototype of a recommender system was developed to provide energy consumption recommendations of different possible classifiers. The prototype is demonstrated as well as discussed and future research points are derived.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. The Internet of Things, enterprise social networks, adaptive case management, mobility systems, analytics for big data, and cloud services environments are emerging to support smart connected products and services and the digital transformation. Biological metaphors of living and adaptable ecosystems provide the logical foundation for self-optimizing and resilient run-time environments for intelligent business services and service-oriented enterprise architectures. Our aim is to support flexibility and agile transformations for both business domains and related information technology. The present research paper investigates mechanisms for decision analytics in the context of multi-perspective explorations of enterprise services and their digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support. The paper’s context focuses on digital transformations of business and IT and integrates fundamental mappings between adaptable digital enterprise architectures and service-oriented information systems. We are putting a spotlight on the example domain – Internet of Things.
The digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change drive current and next information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like microservices and the Internet of Things, as part of a new composed digital architecture. To integrate micro-granular architecture models into living architectural model versions we are extending enterprise architecture reference models by state of art elements for agile architectural engineering to support digital products, services, and processes.
In current times, a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Enterprises are presently transforming their strategy, culture, processes, and their information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Digitization fosters the development of IT environments with many rather small and distributed structures, like Internet of Things. This has a strong impact for architecting digital services and products. The change from a closed-world modeling perspective to more flexible open-world and living software and system architectures defines the moving context for adaptable and evolutionary software approaches, which are essential to enable the digital transformation. In this paper, we are putting a spotlight to service oriented software evolution to support the digital transformation with micro granular digital architectures for digital services and products.
A new class of information system architecture, decision-oriented service systems, is spreading more and more. Decision-oriented service systems provide services that support decisions in business processes and products based on the capabilities of cloud-computing environments. To pave the way for the creation of design methods of business processes and products based on decision-oriented service systems, this article introduces a capability-oriented approach. Starting from technological capabilities, more abstract operational and dynamic capabilities are created. The framework created is based on an integrated conceptualization of decision-oriented service systems that allows capturing synergetic effects. By creating the framework, the gap between the technological capabilities of technologies and the strategic goals of enterprises shall be narrowed.
Enterprises are presently transforming their strategy, culture, processes, and their information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Digitization fosters the development of IT systems with many rather small and distributed structures, like Internet of Things or mobile systems. Since years a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. This has a strong impact for architecting digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of system architectures defines the moving context for adaptable systems, which are essential to enable the digital transformation. In this paper, we are focusing on a decision-oriented architectural composition approach to support the transformation for digital services and products.
Revenue management information systems are very important in the hospitality sector. Revenue decisions can be better prepared based on different information from different information systems and decision strategies. There is a lack of research about the usage of such systems in small and medium-sized hotels and architectural configurations. Our paper empirically shows the current development of revenue information systems. Furthermore, we define future developments and requirements to improve such systems and the architectural base.
Predictive maintenance information systems: the underlying conditions and technological aspects
(2020)
Predictive maintenance has the potential to improve the reliability of production and service provisioning. However, there is little knowledge about the proper implementation of predictive maintenance in research and practice. Therefore, we conducted a multi-case study and investigated underlying conditions and technological aspects for implementing a predictive maintenance system and where it leads to. We found that predictive maintenance initiatives are triggered by severe impacts of failures on revenue and profit. Furthermore, successful predictive maintenance initiatives require that pre-conditions are fulfilled: Data must be available and accessible. Very important is also the support by the management. We identified four factors important for the implementation of predictive maintenance. The integration of data is highly facilitated by Cloud-based mechanisms. The detection of events is enabled by advanced analytics. The execution of predictive maintenance operations is supported by data-driven process automation and visualization.
Digital technologies are main strategic drivers for digitalization and offer ubiquitous data availability, unlimited connectivity, and massive processing power for a fundamentally changing business. This leads to the development and application of intelligent digital systems. The current state of research and practice of architecting digital systems and services lacks a solid methodological foundation that fully accommodates all requirements linked to efficient and effective development of digital systems in organizations. Research presented in this paper addresses the question, how management of complexity in digital systems and architectures can be supported from a methodological perspective. In this context, the current focus is on a better understanding of the causes of increased complexity and requirements to methodological support. For this purpose, we take an enterprise architecture perspective, i.e. how the introduction of digital systems affects the complexity of EA. Two industrial case studies and a systematic literature analysis result in the proposal of an extended Digital Enterprise Architecture Cube as framework for future methodical support.
The Internet of Things (IoT) fundamentally influences today’s digital strategies with disruptive business operating models and fast changing markets. New business information systems are integrating emerging Internet of Things infrastructures and components. With the huge diversity of Internet of Things technologies and products organizations have to leverage and extend previous enterprise architecture efforts to enable business value by integrating the Internet of Things into their evolving Enterprise Architecture Management environments. Both architecture engineering and management of current enterprise architectures is complex and has to integrate beside the Internet of Things synergistic disciplines like EAM - Enterprise Architecture and Management with disciplines like: services & cloud computing, semantic-based decision support through ontologies and knowledge-based systems, big data management, as well as mobility and collaboration networks. To provide adequate decision support for complex business/IT environments, it is necessary to identify affected changes of Internet of Things environments and their related fast adapting architecture. We have to make transparent the impact of these changes over the integral landscape of affected EAM-capabilities, like directly and transitively impacted IoT-objects, business categories, processes, applications, services, platforms and infrastructures. The paper describes a new metamodel-based approach for integrating partial Internet of Things objects, which are semi-automatically federated into a holistic Enterprise Architecture Management environment.