Refine
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Informatik (1)
- Life Sciences (1)
Publisher
- De Gruyter (2)
Digital light microscopy techniques are among the most widely used methods in cell biology and medical research. Despite that, the automated classification of objects such as cells or specific parts of tissues in images is difficult. We present an approach to classify confluent cell layers in microscopy images by learned deep correlation features using deep neural networks. These deep correlation features are generated through the use of gram-based correlation features and are input to a neural network for learning the correlation between them. In this work we wanted to prove if a representation of cell data based on this is suitable for its classification as has been done for artworks with respect to their artistic period. The method generates images that contain recognizable characteristics of a specific cell type, for example, the average size and the ordered pattern.
We present an approach for segmenting individual cells and lamellipodia in epithelial cell clusters using fully convolutional neural networks. The method will set the basis for measuring cell cluster dynamics and expansion to improve the investigation of collective cell migration phenomena. The fully learning-based front-end avoids classical feature engineering, yet the network architecture needs to be designed carefully. Our network predicts how likely each pixel belongs to one of the classes and, thus, is able to segment the image. Besides characterizing segmentation performance, we discuss how the network will be further employed.