Refine
Document Type
- Conference proceeding (11)
- Journal article (5)
- Book chapter (1)
Is part of the Bibliography
- yes (17)
Institute
- Informatik (17)
Publisher
- Springer (3)
- De Gruyter (2)
- Hochschule Reutlingen (2)
- IEEE (2)
- IOS Press (2)
- BioMed Central (1)
- Deutsche Gesellschaft für Medizinische Physik (1)
- German Medical Science Publishing House (1)
- Sage (1)
- Science and Technology Publications (1)
Die rasante Entwicklung der Sensortechnik im Endverbraucherbereich lässt einen klinischen Nutzen der verfügbaren dezentral erhobenen Daten aus dem Patientenalltag zur Überwachung des individuellen Gesundheitszustands vermuten. Zur Überprüfung dieser Vermutung ist die Bereitstellung einer entsprechenden Plattform in den klinischen Alltag erforderlich. Hierzu wird die bwHealthApp entwickelt, mit der sowohl die aktuelle Bandbreite als auch die Evolution der Sensortechnik auf die klinische Anwendung abbildbar ist. Mit dem flexiblen Entwurf lässt sich der klinische Nutzen für die personalisierte Medizin evaluieren. Außerdem bietet die bwHealthApp einen an Machbarkeit orientierten Diskussionsbeitrag zu offenen rechtlichen, regulatorischen und ethischen Fragestellungen der Digitalisierung in der Medizin in Deutschland.
Being able to monitor the heart activity of patients during their daily life in a reliable, comfortable and affordable way is one main goal of the personalized medicine. Current wearable solutions lack either on the wearing comfort, the quality and type of the data provided or the price of the device. This paper shows the development of a Textile Sensor Platform (TSP) in the form of an electrocardiogram (ECG)-measuring T-shirt that is able to transmit the ECG signal to a smartphone. The development process includes the selection of the materials, the design of the textile electrodes taking into consideration their electrical characteristics and ergonomy, the integration of the electrodes on the garment and their connection with the embedded electronic part. The TSP is able to transmit a real-time streaming of the ECG-signal to an Android smartphone through Bluetooth Low Energy (BLE). Initial results show a good electrical quality in the textile electrodes and promising results in the capture and transmission of the ECG signal. This is still a working- progress and it is the result of an interdisciplinary master project between the School of Informatics and the School of Textiles & Design of the Reutlingen University.
This work is a report on practical experiences with the issue of interoperability in German practice management systems (PMSs) from an ongoing clinical trial on teledermatology, the TeleDerm project. A proprietary and established web-platform for store-and-forward telemedicine is integrated with the IT in the GPs’ offices for automatic exchange of basic patient data. Most of the 19 different PMSs included in the study sample lack support of modern health data exchange standards, therefore the relatively old but widely available German health data exchange interface “Gerätedatentransfer” (GDT) is used. Due to the lack of enforcement and regulation of the GDT standard, several obstacles to interoperability are encountered. As a partial, but reusable working solution to cope with these issues, we present a custom middleware which is used in conjunction with GDT. We describe the design, technical implementation and observed hindrances with the existing infrastructure. A discussion on health care interfacing standards and the current state of interoperability in German PMS software is given.
We present an approach for segmenting individual cells and lamellipodia in epithelial cell clusters using fully convolutional neural networks. The method will set the basis for measuring cell cluster dynamics and expansion to improve the investigation of collective cell migration phenomena. The fully learning-based front-end avoids classical feature engineering, yet the network architecture needs to be designed carefully. Our network predicts how likely each pixel belongs to one of the classes and, thus, is able to segment the image. Besides characterizing segmentation performance, we discuss how the network will be further employed.
Background: Internationally, teledermatology has proven to be a viable alternative to conventional physical referrals. Travel cost and referral times are reduced while patient safety is preserved. Especially patients from rural areas benefit from this healthcare innovation. Despite these established facts and positive experiences from EU neighboring countries like the Netherlands or the United Kingdom, Germany has not yet implemented store-and-forward teledermatology in routine care.
Methods: The TeleDerm study will implement and evaluate store-and-forward teledermatology in 50 general practitioner (GP) practices as an alternative to conventional referrals. TeleDerm aims to confirm that the possibility of store-and-forward teledermatology in GP practices is going to lead to a 15% (n = 260) reduction in referrals in the intervention arm. The study uses a cluster-randomized controlled trial design. Randomization is planned for the cluster “county”. The main observational unit is the GP practice. Poisson distribution of referrals is assumed. The evaluation of secondary outcomes like acceptance, enablers and barriers uses a mixed methods design with questionnaires and interviews.
Discussion: Due to the heterogeneity of GP practice organization, patient management software, information technology service providers, GP personal technical affinity and training, we expect several challenges in implementing teledermatology in German GP routine care. Therefore, we plan to recruit 30% more GPs than required by the power calculation. The implementation design and accompanying evaluation is expected to deliver vital insights into the specifics of implementing telemedicine in German routine care.
Integrating tools and applications into a clinically useful system for individual continuous health data surveillance requires an architecture considering all relevant medical and technical conditions. Therefore, the requirements of an integrated system including a health app to collect and monitor sensor data to support personalized medicine are analyzed. The structure and behavior of the system are defined regarding the specific health use cases and scenarios. A vendor-independent architecture, which enables the collection of vital data from arbitrary wearables using a smartphone, is presented. The data is centrally managed and processed by attending physicians. The modular architecture allows the system to extend to new scenarios, data formats, etc. A prototypical implementation of the system shows the feasibility of the approach.
A clinically useful system for individual continuous health data monitoring needs an architecture that takes into account all relevant medical and technical conditions. The requirements for a health app to support such a system are collected, and a vendor independent architecture is designed that allows the collection of vital data from arbitrary wearables using a smartphone. A prototypical implementation for the main scenario shows the feasibility of the approach.
Clinical reading centers provide expertise for consistent, centralized analysis of medical data gathered in a distributed context. Accordingly, appropriate software solutions are required for the involved communication and data management processes. In this work, an analysis of general requirements and essential architectural and software design considerations for reading center information systems is provided. The identified patterns have been applied to the implementation of the reading center platform which is currently operated at the Center of Ophthalmology of the University Hospital of Tübingen.
Mobile monitoring of outpatients during cancer therapy becomes possible through technological advancements. This study leveraged a new remote patient monitoring app for in-between systemic therapy sessions. Patients’ evaluation showed that the handling is feasible. Clinical implementation must consider an adaptive development cycle for reliable operations.