Refine
Document Type
- Conference proceeding (63)
- Journal article (42)
- Book chapter (12)
Is part of the Bibliography
- yes (117)
Institute
- Informatik (116)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (23)
- Università Politecnica delle Marche (13)
- Hochschule Reutlingen (11)
- IEEE (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
Energy-efficiency and safety became an important factor for car manufacturers. Thus, the cars have been optimised regarding the energy consumption and safety by optimising for example the power train or the engine. Besides the optimisation of the car itself, energy-efficiency and safety can also be increased by adapting the individual driving behaviour to the current driving situation. This paper introduces a driving system, which is in development. Its goal is to optimise the driving behaviour in terms of energy-efficiency and safety by giving recommendations to the driver. For the creation of a recommendation the driving system monitors the driver and the current driving situation as well as the car using in-vehicle sensors and serial-bus systems. On the basis of the acquired data, the driving system will give individual energy-efficiency and safety recommendations in real-time. This will allow eliminating bad driving habits, while considering the driver needs.
The impact of stress of every human being has become a serious problem. Reported impact on persons are a higher rate or health disorders like heart problems, obesity, asthma, diabetes, depressions and many others. An individual in a stressful situation has to deal with altered cognition as well as an affected decision making skill and problem solving. This could lead to a higher risk for accidents in dynamic environments such as automotive. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives or computes the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence as well as recommend driving behavior to decrease stress influenced driving as well as improve road safety.
Telemedicine is becoming an increasingly important approach to diagnostic, treat or prevent diseases. However, the usage of Information Communication Technologies in healthcare results in a considerable amount of data that must be efficiently and securely transmitted. Many manufacturers provide telemedicine platforms without regarding interoperability, mobility and collaboration. This paper describes a collaborative mobile telemonitoring platform that can use the IEEE 11073 and HL7 communication standards or adapt proprietary protocols. The proposed platform also covers the security and modularity aspects. Furthermore this work introduces an Android-based prototype implementation
This paper presents a new European initiative to support the sustainable empowerment of the ageing society. Empowerment in this context represents the capability to have a self-determined, autonomous and healthy life. The paper justifies the need of such an initiative and highlights the role that telemedicine and ambient assisted living can play in this environment.
Functionally impaired people have problems with choosing and finding the right clothing. So, they need help in their daily life to wash and manage the clothing. The goal of this work is to support the user by giving recommendations to choose the right clothing, to find the clothing and how to wash the clothing. The idea behind eKlarA is to generate a gateway based system that uses sensors to identify the clothing and their state in the clothing cycle. The clothing cycle consists of (one and more) closet, laundry basket and washing machine in one or several places. The gateway uses the information about the clothing, weather and calendar to support the user in the different steps of the clothing cycle. This allows to give more freedom to the functionally impaired people in their daily life.
Besides the optimisation of the car, energy-efficiency and safety can also be increased by optimising the driving behaviour. Based on this fact, a driving system is in development whose goal is to educate the driver in energy-efficient and safe driving. It monitors the driver, the car and the environment and gives energy-efficiency and safety relevant recommendations. However, the driving system tries not to distract or bother the driver by giving recommendations for example during stressful driving situations or when the driver is not interested in that recommendation. Therefore, the driving system monitors the stress level of the driver as well as the reaction of the driver to a given recommendation and decides whether to give a recommendation or not. This allows to suppress recommendations when needed and, thus, to increase the road safety and the user acceptance of the driving system.
Vehicles have been so far improved in terms of energy-efficiency and safety mainly by optimising the engine and the power train. However, there are opportunities to increase energy-efficiency and safety by adapting the individual driving behaviour in the given driving situation. In this paper, an improved rule match algorithm is introduced, which is used in the expert system of a human-centred driving system. The goal of the driving system is to optimise the driving behaviour in terms of energy-efficiency and safety by giving recommendations to the driver. The improved rule match algorithm checks the incoming information against the driving rules to recognise any breakings of a driving rule. The needed information is obtained by monitoring the driver, the current driving situation as well as the car, using in-vehicle sensors and serial-bus systems. On the basis of the detected broken driving rules, the expert system will create individual recommendations in terms of energy-efficiency and safety, which will allow eliminating bad driving habits, while considering the driver needs.
Integrating tools and applications into a clinically useful system for individual continuous health data surveillance requires an architecture considering all relevant medical and technical conditions. Therefore, the requirements of an integrated system including a health app to collect and monitor sensor data to support personalized medicine are analyzed. The structure and behavior of the system are defined regarding the specific health use cases and scenarios. A vendor-independent architecture, which enables the collection of vital data from arbitrary wearables using a smartphone, is presented. The data is centrally managed and processed by attending physicians. The modular architecture allows the system to extend to new scenarios, data formats, etc. A prototypical implementation of the system shows the feasibility of the approach.
A clinically useful system for individual continuous health data monitoring needs an architecture that takes into account all relevant medical and technical conditions. The requirements for a health app to support such a system are collected, and a vendor independent architecture is designed that allows the collection of vital data from arbitrary wearables using a smartphone. A prototypical implementation for the main scenario shows the feasibility of the approach.
Methods based exclusively on heart rate hardly allow to differentiate between physical activity, stress, relaxation, and rest, that is why an additional sensor like activity/movement sensor added for detection and classification. The response of the heart to physical activity, stress, relaxation, and no activity can be very similar. In this study, we can observe the influence of induced stress and analyze which metrics could be considered for its detection. The changes in the Root Mean Square of the Successive Differences provide us with information about physiological changes. A set of measurements collecting the RR intervals was taken. The intervals are used as a parameter to distinguish four different stages. Parameters like skin conductivity or skin temperature were not used because the main aim is to maintain a minimum number of sensors and devices and thereby to increase the wearability in the future.