Refine
Document Type
- Article (3)
- Conference Proceeding (1)
Language
- English (4)
Is part of the Bibliography
- yes (4)
Institute
- Technik (4)
Publisher
Annotations of subject IDs in images are very important as ground truth for face recognition applications and news retrieval systems. Face naming is becoming a significant research topic in news image indexing applications. By exploiting the uniqueness of name, face naming is transformed to the problem of multiple instance learning (MIL) with exclusive constraint, namely the eMIL problem. First, the positive bags and the negative bags are automatically annotated by a hybrid recurrent convolutional neural network and a distributed affinity propagation cluster. Next, positive instance selection and updating are used to reduce the influence of false-positive bag and to improve the performance. Finally, max exclusive density and iterative Max-ED algorithms are proposed to solve the eMIL problem. The experimental results show that the proposed algorithms achieve a significant improvement over other algorithms.
With the continuous development of economy, consumers pay more attention to the demand for personalization clothing. However, the recommendation quality of the existing clothing recommendation system is not enough to meet the user’s needs. When browsing online clothing, facial expression is the salient information to understand the user’s preference. In this paper, we propose a novel method to automatically personalize clothing recommendation based on user emotional analysis. Firstly, the facial expression is classified by multiclass SVM. Next, the user’s multi-interest value is calculated using expression intensity that is obtained by hybrid RCNN. Finally, the multi-interest value is fused to carry out personalized recommendation. The experimental results show that the proposed method achieves a significant improvement over other algorithms.
Annotations of character IDs in news images are critical as ground truth for news retrieval and recommendation system. Universality and accuracy optimization of deep neural network models constitutes the key technology to improve the precision and computing efficiency of automatic news character identification, which is attracting increased attention globally. This paper explores the optimized deep neural network model for automatic focus personage identification in multi-lingual news. First, the face model of the focus personage is trained by using the corresponding face images from German news as positive samples. Next, the scheme of Recurrent Convolutional Neural Network (RCNN) + Bi-directional Long-Short Term Memory (Bi-LSTM) + Conditional Random Field (CRF) is utilized to label the focus name, and the RCNN-RCNN encoder–decoder is applied to translate names of people into multiple languages. Third, face features are described by combining the advantages of Local Gabor Binary Pattern Histogram Sequence (LGBPHS) and RCNN, and iterative quantization (ITQ) is used to binarize codes. Finally, a name semantic network is built for different domains. Experiments are performed on a dataset which comprises approximately 100,000 news images. The experimental results demonstrate that the proposed method achieves a significant improvement over other algorithms.
Facial beauty prediction (FBP) aims to develop a machine that automatically makes facial attractiveness assessment. In the past those results were highly correlated with human ratings, therefore also with their bias in annotating. As artificial intelligence can have racist and discriminatory tendencies, the cause of skews in the data must be identified. Development of training data and AI algorithms that are robust against biased information is a new challenge for scientists. As aesthetic judgement usually is biased, we want to take it one step further and propose an Unbiased Convolutional Neural Network for FBP. While it is possible to create network models that can rate attractiveness of faces on a high level, from an ethical point of view, it is equally important to make sure the model is unbiased. In this work, we introduce AestheticNet, a state-of-the-art attractiveness prediction network, which significantly outperforms competitors with a Pearson Correlation of 0.9601. Additionally, we propose a new approach for generating a bias-free CNN to improve fairness in machine learning.