Ja
Refine
Document Type
- Article (514)
- Conference Proceeding (401)
- Book (90)
- Part of a Book (48)
- Working Paper (28)
- Doctoral Thesis (22)
- Report (22)
- Part of Periodical (17)
- Review (4)
- Anthology (2)
Is part of the Bibliography
- yes (1149)
Institute
- ESB Business School (402)
- Informatik (382)
- Life Sciences (145)
- Technik (129)
- Texoversum (67)
- Zentrale Einrichtungen (8)
Publisher
- Hochschule Reutlingen (179)
- Elsevier (86)
- MDPI (76)
- Gesellschaft für Informatik (63)
- Universitätsbibliothek Tübingen (59)
- De Gruyter (31)
- Springer (28)
- IARIA (23)
- MIM, Marken-Institut München (20)
- Deutsches Textilforschungszentrum Nord-West (10)
Das Interview geht der Frage nach: Verändern neue Geschäftsmodelle die Unternehmenssteuerung? Dazu machen die Diskussionspartner am Beispiel der Automobilbranche auf vielfältige Veränderungen und Entwicklungen aufmerksam. Zentral ist die Herausbildung neuer Geschäftsmodelle, die die Funktionsweise und den Marktauftritt der Unternehmen zeitgerecht und wirtschaftlich erfolgreich gestalten sollen. Ebenso wichtig ist die Zusammenfassung der vielfältigen Steuerungsaktivitäten in einem Steuerungsmodell und deren fortlaufende Abstimmung mit den sich aus dem Geschäftsmodell jeweils ergebenden Steuerungsanforderungen.
The aim of this paper is to show to what extent Artificial Intelligence can be used to optimize forecasting capability in procurement as well as to compare AI with traditional statistic methods. At the same time this article presents the status quo of the research project ANIMATE. The project applies Artificial Intelligence to forecast customer orders in medium-sized companies.
Precise forecasts are essential for companies. For planning, decision making and controlling. Forecasts are applied, e.g. in the areas of supply chain, production or purchasing. Medium-sized companies have major challenges in using suitable methods to improve their forecasting ability.
Companies often use proven methods such as classical statistics as the ARIMA algorithm. However, simple statistics often fail while applied for complex non-linear predictions.
Initial results show that even a simple MLP ANN produces better results than traditional statistic methods. Furthermore, a baseline (Implicit Sales Expectation) of the company was used to compare the performance. This comparison also shows that the proposed AI method is superior.
Until the developed method becomes part of corporate practice, it must be further optimized. The model has difficulties with strong declines, for example due to holidays. The authors are certain that the model can be further improved. For example, through more advanced methods, such as a FilterNet, but also through more data, such as external data on holiday periods.
Intracranial brain tumors are one of the ten most common malignant cancers and account for substantial morbidity and mortality. The largest histological category of primary brain tumors is the gliomas which occur with an ultimate heterogeneous appearance and can be challenging to discern radiologically from other brain lesions. Neurosurgery is mostly the standard of care for newly diagnosed glioma patients and may be followed by radiation therapy and adjuvant temozolomide chemotherapy.
However, brain tumor surgery faces fundamental challenges in achieving maximal tumor removal while avoiding postoperative neurologic deficits. Two of these neurosurgical challenges are presented as follows. First, manual glioma delineation, including its sub-regions, is considered difficult due to its infiltrative nature and the presence of heterogeneous contrast enhancement. Second, the brain deforms its shape, called “brain shift,” in response to surgical manipulation, swelling due to osmotic drugs, and anesthesia, which limits the utility of pre-operative imaging data for guiding the surgery.
Image-guided systems provide physicians with invaluable insight into anatomical or pathological targets based on modern imaging modalities such as magnetic resonance imaging (MRI) and Ultrasound (US). The image-guided toolkits are mainly computer-based systems, employing computer vision methods to facilitate the performance of peri-operative surgical procedures. However, surgeons still need to mentally fuse the surgical plan from pre-operative images with real-time information while manipulating the surgical instruments inside the body and monitoring target delivery. Hence, the need for image guidance during neurosurgical procedures has always been a significant concern for physicians.
This research aims to develop a novel peri-operative image-guided neurosurgery (IGN) system, namely DeepIGN, that can achieve the expected outcomes of brain tumor surgery, thus maximizing the overall survival rate and minimizing post-operative neurologic morbidity. In the scope of this thesis, novel methods are first proposed for the core parts of the DeepIGN system of brain tumor segmentation in MRI and multimodal pre-operative MRI to the intra-operative US (iUS) image registration using the recent developments in deep learning. Then, the output prediction of the employed deep learning networks is further interpreted and examined by providing human-understandable explainable maps. Finally, open-source packages have been developed and integrated into widely endorsed software, which is responsible for integrating information from tracking systems, image visualization, image fusion, and displaying real-time updates of the instruments relative to the patient domain.
The components of DeepIGN have been validated in the laboratory and evaluated in the simulated operating room. For the segmentation module, DeepSeg, a generic decoupled deep learning framework for automatic glioma delineation in brain MRI, achieved an accuracy of 0.84 in terms of the dice coefficient for the gross tumor volume. Performance improvements were observed when employing advancements in deep learning approaches such as 3D convolutions over all slices, region-based training, on-the-fly data augmentation techniques, and ensemble methods.
To compensate for brain shift, an automated, fast, and accurate deformable approach, iRegNet, is proposed for registering pre-operative MRI to iUS volumes as part of the multimodal registration module. Extensive experiments have been conducted on two multi-location databases: the BITE and the RESECT. Two expert neurosurgeons conducted additional qualitative validation of this study through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that the proposed iRegNet is fast and achieves state-of-the-art accuracies. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images, as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance.
For the explainability module, the NeuroXAI framework is proposed to increase the trust of medical experts in applying AI techniques and deep neural networks. The NeuroXAI includes seven explanation methods providing visualization maps to help make deep learning models transparent. Experimental findings showed that the proposed XAI framework achieves good performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully.
Furthermore, an interactive neurosurgical display has been developed for interventional guidance, which supports the available commercial hardware such as iUS navigation devices and instrument tracking systems. The clinical environment and technical requirements of the integrated multi-modality DeepIGN system were established with the ability to incorporate: (1) pre-operative MRI data and associated 3D volume reconstructions, (2) real-time iUS data, and (3) positional instrument tracking. This system's accuracy was tested using a custom agar phantom model, and its use in a pre-clinical operating room is simulated. The results of the clinical simulation confirmed that system assembly was straightforward, achievable in a clinically acceptable time of 15 min, and performed with a clinically acceptable level of accuracy.
In this thesis, a multimodality IGN system has been developed using the recent advances in deep learning to accurately guide neurosurgeons, incorporating pre- and intra-operative patient image data and interventional devices into the surgical procedure. DeepIGN is developed as open-source research software to accelerate research in the field, enable ease of sharing between multiple research groups, and continuous developments by the community. The experimental results hold great promise for applying deep learning models to assist interventional procedures - a crucial step towards improving the surgical treatment of brain tumors and the corresponding long-term post-operative outcomes.
Erst die Corona-Pandemie, dann der Krieg in der Ukraine und die Energiekrise. Es scheint als rutschten wir von einer Katastrophe in die andere ohne zu wissen was als Nächstes kommt. Wir müssen uns der Frage stellen, wie wir solchen Krisen zukünftig begegnen können.
Auch die Forscherinnen und Forscher an der Hochschule Reutlingen leisten einen Beitrag dazu, unsere Gesellschaft widerstandsfähiger und robuster zu machen – sei es durch pfiffige Lösungen für die Energiekrise, durch kompetente Beratung zu Ressourceneffizienz und Lieferketten oder durch aktuelle Forschungsansätze zu resilienten IT-Strukturen und einer resilienten Wirtschaft.
This paper reviews suggestions for changes to database technology coming from the work of many researchers, particularly those working with evolving big data. We discuss new approaches to remote data access and standards that better provide for durability and auditability in settings including business and scientific computing. We propose ways in which the language standards could evolve, with proof-of-concept implementations on Github.
We study whether compulsory religious education in schools affects students' religiosity as adults. We exploit the staggered termination of compulsory religious education across German states in models with state and cohort fixed effects. Using three different datasets, we find that abolishing compulsory religious education significantly reduced religiosity of affected students in adulthood. It also reduced the religious actions of personal prayer, church-going, and church membership. Beyond religious attitudes, the reform led to more equalized gender roles, fewer marriages and children, and higher labor-market participation and earnings. The reform did not affect ethical and political values or non-religious school outcomes.
We study whether compulsory religious education in schools affects students' religiosity as adults. We exploit the staggered termination of compulsory religious education across German states in models with state and cohort fixed effects. Using three different datasets, we find that abolishing compulsory religious education significantly reduced religiosity of affected students in adulthood. It also reduced the religious actions of personal prayer, church-going, and church membership. Beyond religious attitudes, the reform led to more equalized gender roles, fewer marriages and children, and higher labor-market participation and earnings. The reform did not affect ethical and political values or non-religious school outcomes.
Die Lohnlücke zwischen Frauen und Männern (der sogenannte Gender Pay Gap) wird üblicherweise in Bevölkerungsgruppen untersucht, die ihre Bildungslaufbahn bereits abgeschlossen haben. In diesem Beitrag betrachten wir eine frühere Phase der Berufstätigkeit, indem wir den Gender Pay Gap unter Studierenden, die neben ihrem Studium arbeiten, analysieren. Anhand von Daten aus fünf Kohorten einer Studierendenbefragung in Deutschland beschreiben wir den Gender Pay Gap und diskutieren mögliche Erklärungen. Die Ergebnisse zeigen, dass Studentinnen im Durchschnitt etwa 6% weniger verdienen als Studenten. Nach Berücksichtigung verschiedener entlohnungsrelevanter Faktoren verringert sich die Lücke auf 4,1%. Einer der Hauptgründe für die Differenz in der Entlohnung sind die unterschiedlichen Beschäftigungen, die männliche und weibliche Studierende ausüben.
Being exposed to compulsory religious education in school can have long-run consequences for students’ lives. At different points in time since the 1970s, German states terminated compulsory religious education in public schools and replaced it by a choice between ethics classes and religious education. This article shows that the reform not only led to reduced religiosity in students’ later life, but also eroded traditional attitudes towards gender roles and increased labor-market participation and earnings.
Gender pay gaps are commonly studied in populations with already completed educational careers. We focus on an earlier stage by investigating the gender pay gap among university students working alongside their studies. With data from five cohorts of a large-scale student survey from Germany, we use regression and wage decomposition techniques to describe gender pay gaps and potential explanations. We find that female students earn about 6% less on average than male students, which reduces to 4.1% when accounting for a rich set of explanatory variables. The largest explanatory factor is the type of jobs male and female students pursue.