Ja
Refine
Document Type
- Journal article (556)
- Conference proceeding (409)
- Book (90)
- Book chapter (52)
- Working Paper (30)
- Doctoral Thesis (25)
- Report (24)
- Issue of a journal (17)
- Review (4)
- Anthology (2)
Is part of the Bibliography
- yes (1210)
Institute
- ESB Business School (418)
- Informatik (405)
- Life Sciences (151)
- Technik (138)
- Texoversum (72)
- Zentrale Einrichtungen (10)
Publisher
- Hochschule Reutlingen (175)
- Elsevier (97)
- MDPI (87)
- Gesellschaft für Informatik (63)
- Universitätsbibliothek Tübingen (59)
- Springer (35)
- De Gruyter (32)
- IARIA (26)
- MIM, Marken-Institut München (20)
- Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (11)
Silicon neurons represent different levels of biological details and accuracies as a trade-off between complexity and power consumption. With respect to this trade-off and high similarity to neuron behaviour models, relaxation-type oscillator circuits often yield a good compromise to emulate neurons. In this chapter, two exemplified relaxation-type silicon neurons are presented that emulate neural behaviour with energy consumption under the scale of nJ/spike. The first proposed fully CMOS relaxation SiN is based on mathematical Izhikevich model and can mimic a broad range of physiologically observable spike patterns. The results of kinds of biologically plausible output patterns and coupling process of two SiNs are presented in 0.35 μm CMOS technology. The second type is a novel ultra-low-frequency hybrid CMOS-memristive SiN based on relaxation oscillators and analog memristive devices. The hybrid SiN directly emulates neuron behaviour in the range of physiological spiking frequencies (less than 100 Hz). The relaxation oscillator is implemented and fabricated in 0.13 μm CMOS technology. An autonomous neuronal synchronization process is demonstrated with two relaxation oscillators coupled by an analog memristive device in the measurement to emulate the synchronous behaviour between spiking neurons.
Distributed Ledger Technologies for the energy sector: facilitating interoperability analysis
(2023)
The use of distributed data storage and management structures, such as Distributed Ledger Technologies (DLT), in the energy sector has gained great interest in recent times. This opens up new possibilities in e.g. microgrid management, aggregation of distributed resources, peer-to- peer trading, integration of electromobility or proof-of-origin strategies. However, in order to benefit from those new possibilities, new challenges have to be overcome. This work focuses on one of these challenges, which is the need to ensure interoperability when integrating DLT-enabled devices in energy use cases. Firstly, the use of DLTs in the energy sector will be analyzed and the main use cases will be presented. Then, a classification of DLT-Energy use cases will be proposed. Secondly, the need for a common reference architecture framework to analyze those use cases with a focus on interoperability will be discussed and the current activities in research and standardization in this field will be presented. Finally, a new common reference architecture framework based on current activities in standardization will be presented.
It is widely recognized that Education for Sustainable Development (ESD) plays a critical role in creating a more sustainable world by fostering the development of the knowledge, skills, understanding, values, and actions necessary for such change (UNESCO, 2020). In this context, ESD represents a holistic approach that focuses on lifelong learning to create informed people who can make decisions today and in the future. Related to the textile and fashion industry, ESD is an appropriate approach to continuously implement sustainability aspects in education and training. To achieve this goal, the European project "Sustainable Fashion Curriculum at Textile Universities in Europe - Development, Implementation and Evaluation of a Teaching Module for Educators" (Fashion DIET) has developed a digital teaching module in a partnership between a University of Education and universities with textile departments. The main objective of the project is to elaborate an ESD module for university lecturers in order to introduce a sustainable fashion curriculum in textile universities in Europe and implement it in educational systems. The project therefore aims to train educators along the textile supply chain, to inform the young generation about the latest aspects of sustainability and raise awareness by implementing ESD in textile education. This paper presents the learning outcomes of the modules on sustainable fashion design and related production technologies developed by the technical university partners, as part of the total of 42 courses covering didactic-methodological approaches and the sustainable orientation of the fashion market, offered at the consortium level. The project content is made available as Open Educational Resources through Glocal Campus, an open-access e-learning platform that enables virtual collaboration between universities.
Context
Web APIs are one of the most used ways to expose application functionality on the Web, and their understandability is important for efficiently using the provided resources. While many API design rules exist, empirical evidence for the effectiveness of most rules is lacking.
Objective
We therefore wanted to study 1) the impact of RESTful API design rules on understandability, 2) if rule violations are also perceived as more difficult to understand, and 3) if demographic attributes like REST-related experience have an influence on this.
Method
We conducted a controlled Web-based experiment with 105 participants, from both industry and academia and with different levels of experience. Based on a hybrid between a crossover and a between-subjects design, we studied 12 design rules using API snippets in two complementary versions: one that adhered to a rule and one that was a violation of this rule. Participants answered comprehension questions and rated the perceived difficulty.
Results
For 11 of the 12 rules, we found that violation performed significantly worse than rule for the comprehension tasks. Regarding the subjective ratings, we found significant differences for 9 of the 12 rules, meaning that most violations were subjectively rated as more difficult to understand. Demographics played no role in the comprehension performance for violation.
Conclusions
Our results provide first empirical evidence for the importance of following design rules to improve the understandability of Web APIs, which is important for researchers, practitioners, and educators.
In the last few years, business firms have substantially invested into the artificial intelligence (AI) technology. However, according to several studies, a significant percentage of AI projects fail or do not deliver business value. Due to the specific characteristics of AI projects, the existing body of knowledge about success and failure of information systems (IS) projects in general may not be transferrable to the context of AI. Therefore, the objective of our research has been to identify factors that can lead to AI project failure. Based on interviews with AI experts, this article identifies and discusses 12 factors that can lead to project failure. The factors can be further classified into five categories: unrealistic expectations, use case related issues, organizational constraints, lack of key resources, and, technological issues. This research contributes to knowledge by providing new empirical data and synthesizing the results with related findings from prior studies. Our results have important managerial implications for firms that aim to adopt AI by helping the organizations to anticipate and actively manage risks in order to increase the chances of project success.
In the course of a more intensive energy generation from regenerative sources, an increased number of energy storages is required. In addition to the widespread means of storing electric energy, storing energy thermally can contribute significantly. However, limited research exists on the behaviour of thermal energy storages (TES) in practical operation. While the physical processes are well known, it is nevertheless often not possible to adequately evaluate its performance with respect to the quality of thermal stratification inside the tank, which is crucial for the thermodynamic effectiveness of the TES. The behaviour of a TES is experimentally investigated in cyclic charging and discharging operation in interaction with a cogeneration (CHP) unit at a test rig in the lab. From the measurements the quality of thermal stratification is evaluated under varying conditions using different metrics such as normalised stratification factor, modified MIX number, exergy number and exergy efficiency, which extends the state of art for CHP applications. The results show that the positioning of the temperature sensors for turning the CHP unit on and off has a significant influence on both the effective capacity of a TES and the quality of thermal stratification inside the tank. It is also revealed that the positioning of at least one of these sensors outside the storage tank, i.e. in the return line to the CHP unit, prevents deterioration of thermal stratification, thereby enhancing thermodynamic effectiveness. Furthermore, the effects of thermal load and thermal load profile on effective capacity and thermal stratification are discussed, even though these are much smaller compared to the effect of positioning the temperature sensors.
We address the problem of 3D face recognition based on either 3D sensor data, or on a 3D face reconstructed from a 2D face image. We focus on 3D shape representation in terms of a mesh of surface normal vectors. The first contribution of this work is an evaluation of eight different 3D face representations and their multiple combinations. An important contribution of the study is the proposed implementation, which allows these representations to be computed directly from 3D meshes, instead of point clouds. This enhances their computational efficiency. Motivated by the results of the comparative evaluation, we propose a 3D face shape descriptor, named Evolutional Normal Maps, that assimilates and optimises a subset of six of these approaches. The proposed shape descriptor can be modified and tuned to suit different tasks. It is used as input for a deep convolutional network for 3D face recognition. An extensive experimental evaluation using the Bosphorus 3D Face, CASIA 3D Face and JNU-3D Face datasets shows that, compared to the state of the art methods, the proposed approach is better in terms of both computational cost and recognition accuracy.
In this paper, it aims to model wind speed time series at multiple sites. The five-parameter Johnson distribution is deployed to relate the wind speed at each site to a Gaussian time series, and the resultant m-dimensional Gaussian stochastic vector process Z(t) is employed to model the temporal-spatial correlation of wind speeds at m different sites. In general, it is computationally tedious to obtain the autocorrelation functions (ACFs) and cross-correlation functions (CCFs) of Z(t), which are different to those of wind speed times series. In order to circumvent this correlation distortion problem, the rank ACF and rank CCF are introduced to characterize the temporal-spatial correlation of wind speeds, whereby the ACFs and CCFs of Z(t) can be analytically obtained. Then, Fourier transformation is implemented to establish the cross-spectral density matrix of Z(t), and an analytical approach is proposed to generate samples of wind speeds at m different sites. Finally, simulation experiments are performed to check the proposed methods, and the results verify that the five-parameter Johnson distribution can accurately match distribution functions of wind speeds, and the spectral representation method can well reproduce the temporal-spatial correlation of wind speeds.
Recent advances in artificial intelligence have enabled promising applications in neurosurgery that can enhance patient outcomes and minimize risks. This paper presents a novel system that utilizes AI to aid neurosurgeons in precisely identifying and localizing brain tumors. The system was trained on a dataset of brain MRI scans and utilized deep learning algorithms for segmentation and classification. Evaluation of the system on a separate set of brain MRI scans demonstrated an average Dice similarity coefficient of 0.87. The system was also evaluated through a user experience test involving the Department of Neurosurgery at the University Hospital Ulm, with results showing significant improvements in accuracy, efficiency, and reduced cognitive load and stress levels. Additionally, the system has demonstrated adaptability to various surgical scenarios and provides personalized guidance to users. These findings indicate the potential for AI to enhance the quality of neurosurgical interventions and improve patient outcomes. Future work will explore integrating this system with robotic surgical tools for minimally invasive surgeries.
Introduction: Even if there is a standard procedure of CI surgery, especially in pediatric surgery surgical steps often differ individually due to anatomical variations, malformations or unforseen events. This is why every surgical report should be created individually, which takes time and relies on the correct memory of the surgeon. A standardized recording of intraoperative data and subsequent storage as well as text processing would therefore be desirable and provides the basis for subsequent data processing, e.g. in the context of research or quality assurance.
Method: In cooperation with Reutlingen University, we conducted a workflow analysis of the prototype of a semi-automatic checklist tool. Based on automatically generated checklists generated from BPMN models a prototype user interface was developed for an android tablet. Functions such as uploading photos and files, manual user entries, the interception of foreseeable deviations from the normal course of operations and the automatic creation of OP documentation could be implemented. The system was tested in a remote usability test on a petrous bone model.
Result: The user interface allows a simple intuitive handling, which can be well implemented in the intraoperative setting. Clinical data as well as surgical steps could be individually recorded and saved via DICOM. An automatic surgery report could be created and saved.
Summary: The use of a dynamic checklist tool facilitates the capture, storage and processing of surgical data. Further applications in clinical practice are pending.