537 Elektrizität, Elektronik
Refine
Year of publication
- 2015 (8)
Document Type
Language
- English (8)
Has full text
- yes (8)
Is part of the Bibliography
- yes (8)
Institute
- Technik (8)
Publisher
Physical analog IC design has not been automated to the same degree as digital IC design. This shortfall is primarily rooted in the analog IC design problem itself, which is considerably more complex even for small problem sizes. Significant progress has been made in analog automation in several R&D target areas in recent years. Constraint engineering and generator-based module approaches are among the innovations that have emerged. Our paper will first present a brief review of the state of the art of analog layout automation. We will then introduce active and open research areas and present two visions – a “continuous layout design flow” and a “bottom-up meets top-down design flow” – which could significantly push analog design automation towards its goal of analog synthesis.
When a bonding wire becomes too hot, it fuses and fails. The ohmic heat that is generated in the wire can be partially dissipated to a mold package. For this cooling effect the thermal contact between wire and package is an important parameter. Because this parameter can degrade over lifetime, the fusing of a bonding wire can also occur as a long-term effect. Another important factor is the thermal power generated in the vicinity of the bond pads. Nowadays, the reliability of bond wires relies on robust dimensioning based on estimations. Smaller package sizes increase the need for better predictive methods.
The Bond Calculator, a new thermo-electrical simulation tool, is able to predict the temperature profiles along bond wires of arbitrary dimensions in dependence on the applied arbitrary transient current profile, the mold surrounding the wire, and the thermal contact between wire and mold.
In this paper we closely investigated the spatial temperature profiles along different bond wires in air in order to make a first step towards the experimental verification of the simulation model. We are using infrared microscopy in order to measure the thermal radiation generated along the bond wire. This is easier to perform quantitatively in air than in the mold package, because of the non-negligible absorbance of the mold material in the infrared wavelength region.
The possibility to bring the interference source, close to the potential target is characterized by the property of the source as stationary, portable, mobile, very mobile and highly mobile [3]. Starting from the existing and well-known IEME interference or IEMI (Intentional Electromagnetic Interference) and the already existing classifications an analysis of methods based on a comparative study of the methods used to classify the intentional EM environment is carried out, which takes into account the frequency, the cost, the amplitude of the noise signal, the radiated power and the energy of a pulse of radiation.
This paper evaluates experimentally the susceptibility of IT-networks under influences and the threats of HPEM (High Power Electromagnetic) and IEMI (Intentional Electromagnetic Interferences). As HPEM source a PBG 5 (Pulse Burst Generator) adapted to a TEM (Transversal Electromagnetic) Horn type antenna and a 90 cm IRA (Impulse Radiating Antenna) type antenna is used. Different network cable types and categories with different lengths are used. The immunity of the IT network is examined and the breakdown failure rate of the system is defined for a PRF (Pulse Repetition Frequency) of 500 s-1 in duration of 10 seconds. Series of measurements were carried out and disturbances of keyboards, mouse, switches, distortions on monitors and failures of the IT network and, even crash of PCs were observed. It is shown amongst other that by increasing the pulse repetition rate or frequency, generic test IT-networks are more susceptible to interference. Obtained results provide another view of the susceptibility analysis of modern generic IT-networks against UWB-Threats.
DMOS transistors in integrated smart power technologies are often subject to cyclic power dissipation with substantial selfheating. This leads to repetitive thermo mechanical stress, causing fatigue of the on-chip metallization and limiting the lifetime. Hence, most designs use large devices for lower peak temperatures and thus reduced stress to avoid premature failures.
However, significantly smaller DMOS transistors are acceptable if the system reverts to a safer operating condition with lower stress when a failure is expected to occur in the near future. Hence, suitable early-warning sensors are required. This paper proposes a floating metal meander embedded between DMOS source and drain to detect an impending metallization failure. Measurement results of several variants will be presented and discussed, investigating their suitability as early warning indicators.
A TLP system with a very low characteristic impedance of 1.5 Ω and a selectable pulse length from 0.5 to 6 μs is presented. It covers the entire operation region of many power semiconductors up to 700 V and 400 A. Ist applicability is demonstrated by determining the Output characteristics for two Cool MOS devices up to destruction.
This paper presents a measurement setup and an assembly technique suitable for characterization of power semiconductor devices under very high temperature conditions exceeding 500°C. An important application of this is the experimental investigation of wide bandgap semiconductors. Measurement results are shown for a 1200V SiC MOSFET and a 650V depletion mode GaN HEMT.
DMOS transistors often suffer from substantial self-heating during high power dissipation, which can lead to thermal destruction if the device temperature reaches excessive values. A successfully demonstrated method to reduce the peak temperature is the redistribution of power dissipation density from the hotter to the cooler device areas by careful layout modification. However, this is very tedious and time-consuming if complex-shaped devices as often found in industrial applications are considered.
This paper presents an approach for fully automatic layout optimization which requires only a few hours processing time. The approach is applied to complex shaped test structures which are investigated by measurements and electro-thermal simulations. Results show a significantly lower peak temperature and an energy capability gain of 84 %, offering potential for a 18 % size reduction of active area.