Refine
Document Type
- Conference proceeding (17)
- Journal article (6)
- Book chapter (2)
Language
- English (25)
Has full text
- yes (25)
Is part of the Bibliography
- yes (25)
Institute
- Informatik (25)
Publisher
- Association for Computing Machinery (6)
- IEEE (6)
- Springer (5)
- IOS Press (2)
- ACM (1)
- Association of Computing Machinery (1)
- OpenProceedings (1)
- Sage Publishing (1)
- Springer Nature (1)
- Universität Konstanz (1)
Massive data transfers in modern key/value stores resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, have yet to see widespread use.
In this paper we introduce nKV, which is a key/value store utilizing native computational storage and near-data processing. On the one hand, nKV can directly control the data and computation placement on the underlying storage hardware. On the other hand, nKV propagates the data formats and layouts to the storage device where, software and hardware parsers and accessors are implemented. Both allow NDP operations to execute in host-intervention-free manner, directly on physical addresses and thus better utilize the underlying hardware. Our performance evaluation is based on executing traditional KV operations (GET, SCAN) and on complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on real hardware – the COSMOS+ platform.
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become viable.
The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under NoFTL-KV and the COSMOS hardware platform.
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.
This work is a report on practical experiences with the issue of interoperability in German practice management systems (PMSs) from an ongoing clinical trial on teledermatology, the TeleDerm project. A proprietary and established web-platform for store-and-forward telemedicine is integrated with the IT in the GPs’ offices for automatic exchange of basic patient data. Most of the 19 different PMSs included in the study sample lack support of modern health data exchange standards, therefore the relatively old but widely available German health data exchange interface “Gerätedatentransfer” (GDT) is used. Due to the lack of enforcement and regulation of the GDT standard, several obstacles to interoperability are encountered. As a partial, but reusable working solution to cope with these issues, we present a custom middleware which is used in conjunction with GDT. We describe the design, technical implementation and observed hindrances with the existing infrastructure. A discussion on health care interfacing standards and the current state of interoperability in German PMS software is given.
Background: Internationally, teledermatology has proven to be a viable alternative to conventional physical referrals. Travel cost and referral times are reduced while patient safety is preserved. Especially patients from rural areas benefit from this healthcare innovation. Despite these established facts and positive experiences from EU neighboring countries like the Netherlands or the United Kingdom, Germany has not yet implemented store-and-forward teledermatology in routine care.
Methods: The TeleDerm study will implement and evaluate store-and-forward teledermatology in 50 general practitioner (GP) practices as an alternative to conventional referrals. TeleDerm aims to confirm that the possibility of store-and-forward teledermatology in GP practices is going to lead to a 15% (n = 260) reduction in referrals in the intervention arm. The study uses a cluster-randomized controlled trial design. Randomization is planned for the cluster “county”. The main observational unit is the GP practice. Poisson distribution of referrals is assumed. The evaluation of secondary outcomes like acceptance, enablers and barriers uses a mixed methods design with questionnaires and interviews.
Discussion: Due to the heterogeneity of GP practice organization, patient management software, information technology service providers, GP personal technical affinity and training, we expect several challenges in implementing teledermatology in German GP routine care. Therefore, we plan to recruit 30% more GPs than required by the power calculation. The implementation design and accompanying evaluation is expected to deliver vital insights into the specifics of implementing telemedicine in German routine care.
We introduce IPA-IDX – an approach to handle index modifications modern storage technologies (NVM, Flash) as physical in-place appends, using simplified physiological log records. IPA-IDX provides similar performance and longevity advantages for indexes as basic IPA [5] does for tables. The selective application of IPA-IDX and basic IPA to certain regions and objects, lowers the GC overhead by over 60%, while keeping the total space overhead to 2%. The combined effect of IPA and IPA-IDX increases performance by 28%.
Many modern DBMS architectures require transferring data from storage to process it afterwards. Given the continuously increasing amounts of data, data transfers quickly become a scalability limiting factor. Near-Data Processing and smart/computational storage emerge as promising trends allowing for decoupled in-situ operation execution, data transfer reduction and better bandwidth utilization. However, not every operation is suitable for an in-situ execution and a careful placement and optimization is needed.
In this paper we present an NDP-aware cost model. It has been implemented in MySQL and evaluated with nKV. We make several observations underscoring the need for optimization.
Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.
Background
Although teledermatology has been proven internationally to be an effective and safe addition to the care of patients in primary care, there are few pilot projects implementing teledermatology in routine outpatient care in Germany. The aim of this cluster randomized controlled trial was to evaluate whether referrals to dermatologists are reduced by implementing a store-and-forward teleconsultation system in general practitioner practices.
Methods
Eight counties were cluster randomized to the intervention and control conditions. During the 1-year intervention period between July 2018 and June 2019, 46 general practitioner practices in the 4 intervention counties implemented a store-and-forward teledermatology system with Patient Data Management System interoperability. It allowed practice teams to initiate teleconsultations for patients with dermatologic complaints. In the four control counties, treatment as usual was performed. As primary outcome, number of referrals was calculated from routine health care data. Poisson regression was used to compare referral rates between the intervention practices and 342 control practices.
Results
The primary analysis revealed no significant difference in referral rates (relative risk = 1.02; 95% confidence interval = 0.911–1.141; p = .74). Secondary analyses accounting for sociodemographic and practice characteristics but omitting county pairing resulted in significant differences of referral rates between intervention practices and control practices. Matched county pair, general practitioner age, patient age, and patient sex distribution in the practices were significantly related to referral rates.
Conclusions
While a store-and-forward teleconsultation system was successfully implemented in the German primary health care setting, the intervention's effect was superimposed by regional factors. Such regional factors should be considered in future teledermatology research.
Current data-intensive systems suffer from scalability as they transfer massive amounts of data to the host DBMS to process it there. Novel near-data processing (NDP) DBMS architectures and smart storage can provably reduce the impact of raw data movement. However, transferring the result-set of an NDP operation may increase the data movement, and thus, the performance overhead. In this paper, we introduce a set of in-situ NDP result-set management techniques, such as spilling, materialization, and reuse. Our evaluation indicates a performance improvement of 1.13 × to 400 ×.