Refine
Document Type
- Conference Proceeding (13)
- Article (5)
- Part of a Book (2)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- yes (20)
Institute
- Informatik (20)
Publisher
- IEEE (6)
- ACM (4)
- Springer International Publishing (2)
- Association for Computing Machinery (1)
- Association of Computing Machinery (1)
- BioMed Central (1)
- Open Proceedings.org, Univ. of Konstanz (1)
- Sage (1)
- Springer (1)
- Springer Nature (1)
Current data-intensive systems suffer from scalability as they transfer massive amounts of data to the host DBMS to process it there. Novel near-data processing (NDP) DBMS architectures and smart storage can provably reduce the impact of raw data movement. However, transferring the result-set of an NDP operation may increase the data movement, and thus, the performance overhead. In this paper, we introduce a set of in-situ NDP result-set management techniques, such as spilling, materialization, and reuse. Our evaluation indicates a performance improvement of 1.13 × to 400 ×.
Multi-versioning and MVCC are the foundations of many modern DBMSs. Under mixed workloads and large datasets, the creation of the transactional snapshot can become very expensive, as long-running analytical transactions may request old versions, residing on cold storage, for reasons of transactional consistency. Furthermore, analytical queries operate on cold data, stored on slow persistent storage. Due to the poor data locality, snapshot creation may cause massive data transfers and thus lower performance. Given the current trend towards computational storage and near-data processing, it has become viable to perform such operations in-storage to reduce data transfers and improve scalability. neoDBMS is a DBMS designed for near-data processing and computational storage. In this paper, we demonstrate how neoDBMS performs snapshot computation in-situ. We showcase different interactive scenarios, where neoDBMS outperforms PostgreSQL 12 by up to 5×.
Active storage
(2019)
In brief, Active Storage refers to an architectural hardware and software paradigm, based on collocation storage and compute units. Ideally, it will allow to execute application-defined data ... within the physical data storage. Thus Active Storage seeks to minimize expensive data movement, improving performance, scalability, and resource efficiency. The effective use of Active Storage mandates new architectures, algorithms, interfaces, and development toolchains.
Near-data processing in database systems on native computational storage under HTAP workloads
(2022)
Today’s Hybrid Transactional and Analytical Processing (HTAP) systems, tackle the ever-growing data in combination with a mixture of transactional and analytical workloads. While optimizing for aspects such as data freshness and performance isolation, they build on the traditional data-to-code principle and may trigger massive cold data transfers that impair the overall performance and scalability. Firstly, in this paper we show that Near-Data Processing (NDP) naturally fits in the HTAP design space. Secondly, we propose an NDP database architecture, allowing transactionally consistent in-situ executions of analytical operations in HTAP settings. We evaluate the proposed architecture in state-of-the-art key/value-stores and multi-versioned DBMS. In contrast to traditional setups, our approach yields robust, resource- and cost-effcient performance.
Massive data transfers in modern data-intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-Data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become feasible. The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under RocksDB and the COSMOS hardware platform.
A transaction is a demarcated sequence of application operations, for which the following properties are guaranteed by the underlying transaction processing system (TPS): atomicity, consistency, isolation, and durability (ACID). Transactions are therefore a general abstraction, provided by TPS that simplifies application development by relieving transactional applications from the burden of concurrency and failure handling. Apart from the ACID properties, a TPS must guarantee high and robust performance (high transactional throughput and low response times), high reliability (no data loss, ability to recover last consistent state, fault tolerance), and high availability (infrequent outages, short recovery times).
The architectures and workhorse algorithms of a high-performance TPS are built around the properties of the underlying hardware. The introduction of nonvolatile memories (NVM) as novel storage technology opens an entire new problem space, with the need to revise aspects such as the virtual memory hierarchy, storage management and data placement, access paths, and indexing. NVM are also referred to as storage-class memory (SCM).
For a long time, most discrete accelerators have been attached to host systems using various generations of the PCI Express interface. However, with its lack of support for coherency between accelerator and host caches, fine-grained interactions require frequent cache-flushes, or even the use of inefficient uncached memory regions. The Cache Coherent Interconnect for Accelerators (CCIX) was the first multi-vendor standard for enabling cache-coherent host-accelerator attachments, and already is indicative of the capabilities of upcoming standards such as Compute Express Link (CXL). In our work, we compare and contrast the use of CCIX with PCIe when interfacing an ARM-based host with two generations of CCIX-enabled FPGAs. We provide both low-level throughput and latency measurements for accesses and address translation, as well as examine an application-level use-case of using CCIX for fine-grained synchronization in an FPGA-accelerated database system. We can show that especially smaller reads from the FPGA to the host can benefit from CCIX by having roughly 33% shorter latency than PCIe. Small writes to the host have a latency roughly 32% higher than PCIe, though, since they carry a higher coherency overhead. For the database use-case, the use of CCIX allowed to maintain a constant synchronization latency even with heavy host-FPGA parallelism.
Background
Although teledermatology has been proven internationally to be an effective and safe addition to the care of patients in primary care, there are few pilot projects implementing teledermatology in routine outpatient care in Germany. The aim of this cluster randomized controlled trial was to evaluate whether referrals to dermatologists are reduced by implementing a store-and-forward teleconsultation system in general practitioner practices.
Methods
Eight counties were cluster randomized to the intervention and control conditions. During the 1-year intervention period between July 2018 and June 2019, 46 general practitioner practices in the 4 intervention counties implemented a store-and-forward teledermatology system with Patient Data Management System interoperability. It allowed practice teams to initiate teleconsultations for patients with dermatologic complaints. In the four control counties, treatment as usual was performed. As primary outcome, number of referrals was calculated from routine health care data. Poisson regression was used to compare referral rates between the intervention practices and 342 control practices.
Results
The primary analysis revealed no significant difference in referral rates (relative risk = 1.02; 95% confidence interval = 0.911–1.141; p = .74). Secondary analyses accounting for sociodemographic and practice characteristics but omitting county pairing resulted in significant differences of referral rates between intervention practices and control practices. Matched county pair, general practitioner age, patient age, and patient sex distribution in the practices were significantly related to referral rates.
Conclusions
While a store-and-forward teleconsultation system was successfully implemented in the German primary health care setting, the intervention's effect was superimposed by regional factors. Such regional factors should be considered in future teledermatology research.
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.
Data analytics tasks on large datasets are computationally intensive and often demand the compute power of cluster environments. Yet, data cleansing, preparation, dataset characterization and statistics or metrics computation steps are frequent. These are mostly performed ad hoc, in an explorative manner and mandate low response times. But, such steps are I/O intensive and typically very slow due to low data locality, inadequate interfaces and abstractions along the stack. These typically result in prohibitively expensive scans of the full dataset and transformations on interface boundaries.
In this paper, we examine R as analytical tool, managing large persistent datasets in Ceph, a wide-spread cluster file-system. We propose nativeNDP – a framework for Near Data Processing that pushes down primitive R tasks and executes them in-situ, directly within the storage device of a cluster-node. Across a range of data sizes, we show that nativeNDP is more than an order of magnitude faster than other pushdown alternatives.