004 Informatik
Refine
Document Type
- Conference Proceeding (417)
- Article (89)
- Part of a Book (21)
- Doctoral Thesis (10)
- Book (6)
- Anthology (6)
- Patent / Norm / Richtlinie (1)
- Working Paper (1)
Is part of the Bibliography
- yes (551)
Institute
- Informatik (479)
- ESB Business School (46)
- Technik (27)
Publisher
- Hochschule Reutlingen (93)
- IEEE (74)
- Springer (73)
- Gesellschaft für Informatik (61)
- Elsevier (32)
- ACM (31)
- IARIA (10)
- University of Hawai'i at Manoa (10)
- AIS Electronic Library (AISeL) (9)
- SCITEPRESS (7)
The aim of this paper is to show to what extent Artificial Intelligence can be used to optimize forecasting capability in procurement as well as to compare AI with traditional statistic methods. At the same time this article presents the status quo of the research project ANIMATE. The project applies Artificial Intelligence to forecast customer orders in medium-sized companies.
Precise forecasts are essential for companies. For planning, decision making and controlling. Forecasts are applied, e.g. in the areas of supply chain, production or purchasing. Medium-sized companies have major challenges in using suitable methods to improve their forecasting ability.
Companies often use proven methods such as classical statistics as the ARIMA algorithm. However, simple statistics often fail while applied for complex non-linear predictions.
Initial results show that even a simple MLP ANN produces better results than traditional statistic methods. Furthermore, a baseline (Implicit Sales Expectation) of the company was used to compare the performance. This comparison also shows that the proposed AI method is superior.
Until the developed method becomes part of corporate practice, it must be further optimized. The model has difficulties with strong declines, for example due to holidays. The authors are certain that the model can be further improved. For example, through more advanced methods, such as a FilterNet, but also through more data, such as external data on holiday periods.
Intracranial brain tumors are one of the ten most common malignant cancers and account for substantial morbidity and mortality. The largest histological category of primary brain tumors is the gliomas which occur with an ultimate heterogeneous appearance and can be challenging to discern radiologically from other brain lesions. Neurosurgery is mostly the standard of care for newly diagnosed glioma patients and may be followed by radiation therapy and adjuvant temozolomide chemotherapy.
However, brain tumor surgery faces fundamental challenges in achieving maximal tumor removal while avoiding postoperative neurologic deficits. Two of these neurosurgical challenges are presented as follows. First, manual glioma delineation, including its sub-regions, is considered difficult due to its infiltrative nature and the presence of heterogeneous contrast enhancement. Second, the brain deforms its shape, called “brain shift,” in response to surgical manipulation, swelling due to osmotic drugs, and anesthesia, which limits the utility of pre-operative imaging data for guiding the surgery.
Image-guided systems provide physicians with invaluable insight into anatomical or pathological targets based on modern imaging modalities such as magnetic resonance imaging (MRI) and Ultrasound (US). The image-guided toolkits are mainly computer-based systems, employing computer vision methods to facilitate the performance of peri-operative surgical procedures. However, surgeons still need to mentally fuse the surgical plan from pre-operative images with real-time information while manipulating the surgical instruments inside the body and monitoring target delivery. Hence, the need for image guidance during neurosurgical procedures has always been a significant concern for physicians.
This research aims to develop a novel peri-operative image-guided neurosurgery (IGN) system, namely DeepIGN, that can achieve the expected outcomes of brain tumor surgery, thus maximizing the overall survival rate and minimizing post-operative neurologic morbidity. In the scope of this thesis, novel methods are first proposed for the core parts of the DeepIGN system of brain tumor segmentation in MRI and multimodal pre-operative MRI to the intra-operative US (iUS) image registration using the recent developments in deep learning. Then, the output prediction of the employed deep learning networks is further interpreted and examined by providing human-understandable explainable maps. Finally, open-source packages have been developed and integrated into widely endorsed software, which is responsible for integrating information from tracking systems, image visualization, image fusion, and displaying real-time updates of the instruments relative to the patient domain.
The components of DeepIGN have been validated in the laboratory and evaluated in the simulated operating room. For the segmentation module, DeepSeg, a generic decoupled deep learning framework for automatic glioma delineation in brain MRI, achieved an accuracy of 0.84 in terms of the dice coefficient for the gross tumor volume. Performance improvements were observed when employing advancements in deep learning approaches such as 3D convolutions over all slices, region-based training, on-the-fly data augmentation techniques, and ensemble methods.
To compensate for brain shift, an automated, fast, and accurate deformable approach, iRegNet, is proposed for registering pre-operative MRI to iUS volumes as part of the multimodal registration module. Extensive experiments have been conducted on two multi-location databases: the BITE and the RESECT. Two expert neurosurgeons conducted additional qualitative validation of this study through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that the proposed iRegNet is fast and achieves state-of-the-art accuracies. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images, as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance.
For the explainability module, the NeuroXAI framework is proposed to increase the trust of medical experts in applying AI techniques and deep neural networks. The NeuroXAI includes seven explanation methods providing visualization maps to help make deep learning models transparent. Experimental findings showed that the proposed XAI framework achieves good performance in extracting both local and global contexts in addition to generating explainable saliency maps to help understand the prediction of the deep network. Further, visualization maps are obtained to realize the flow of information in the internal layers of the encoder-decoder network and understand the contribution of MRI modalities in the final prediction. The explainability process could provide medical professionals with additional information about tumor segmentation results and therefore aid in understanding how the deep learning model is capable of processing MRI data successfully.
Furthermore, an interactive neurosurgical display has been developed for interventional guidance, which supports the available commercial hardware such as iUS navigation devices and instrument tracking systems. The clinical environment and technical requirements of the integrated multi-modality DeepIGN system were established with the ability to incorporate: (1) pre-operative MRI data and associated 3D volume reconstructions, (2) real-time iUS data, and (3) positional instrument tracking. This system's accuracy was tested using a custom agar phantom model, and its use in a pre-clinical operating room is simulated. The results of the clinical simulation confirmed that system assembly was straightforward, achievable in a clinically acceptable time of 15 min, and performed with a clinically acceptable level of accuracy.
In this thesis, a multimodality IGN system has been developed using the recent advances in deep learning to accurately guide neurosurgeons, incorporating pre- and intra-operative patient image data and interventional devices into the surgical procedure. DeepIGN is developed as open-source research software to accelerate research in the field, enable ease of sharing between multiple research groups, and continuous developments by the community. The experimental results hold great promise for applying deep learning models to assist interventional procedures - a crucial step towards improving the surgical treatment of brain tumors and the corresponding long-term post-operative outcomes.
This paper reviews suggestions for changes to database technology coming from the work of many researchers, particularly those working with evolving big data. We discuss new approaches to remote data access and standards that better provide for durability and auditability in settings including business and scientific computing. We propose ways in which the language standards could evolve, with proof-of-concept implementations on Github.
With the digital transformation, companies will experience a change that focuses on shaping the organization into an agile organizational form. In today's competitive and fast-moving business environment, it is necessary to react quickly to changing market conditions. Agility represents a promising option for overcoming these challenges. The path to an agile organization represents a development process that requires consideration of countless levels of the enterprise. This paper examines the impact of digital transformation on agile working practices and the benefits that can be achieved through technology. To enable a solution for today's so-called VUCA (Volatility, Uncertainty, Complexity und Ambiguity) world, agile ways of working can be applied project management requires adaptation. In the qualitative study, expert interviews were conducted and analyzed using the grounded theory method. As a result, a model can be presented that shows the influencing factors and potentials of agile management in the context of the digital transformation of medium-sized companies.
Context: Companies that operate in the software-intensive business are confronted with high market dynamics, rapidly evolving technologies as well as fast-changing customer behavior. Traditional product roadmapping practices, such as fixed-time-based charts including detailed planned features, products, or services typically fail in such environments. Until now, the underlying reasons for the failure of product roadmaps in a dynamic and uncertain market environment are not widely analyzed and understood.
Objective: This paper aims to identify current challenges and pitfalls practitioners face when developing and handling product roadmaps in a dynamic and uncertain market environment.
Method: To reach our objective we conducted a grey literature review (GLR).
Results: Overall, we identified 40 relevant papers, from which we could extract 11 challenges of the application of product roadmapping in a dynamic and uncertain market environment. The analysis of the articles showed that the major challenges for practitioners originate from overcoming a feature-driven mindset, not including a lot of details in the product roadmap, and ensuring that the content of the roadmap is not driven by management or expert opinion.
Providing a digital infrastructure, platform technologies foster interfirm collaboration between loosely coupled companies, enabling the formation of ecosystems and building the organizational structure for value co-creation. Despite the known potential, the development of platform ecosystems creates new sources of complexity and uncertainty due to the involvement of various independent actors. For a platform ecosystem to succeed, it is essential that the platform ecosystem participants are aligned, coordinated, and given a common direction. Traditionally, product roadmaps have served these purposes during product development. A systematic mapping study was conducted to better understand how product roadmapping could be used in the dynamic environment of platform ecosystems. One result of the study is that there are hardly any concrete approaches for product roadmapping in platform ecosystems so far. However, many challenges on the topic are described in the literature from different perspectives. Based on the results of the systematic mapping study, a research agenda for product roadmapping in platform ecosystems is derived and presented.
Context: Nowadays the market environment is characterized by high uncertainties due to high market dynamics, confronting companies with new challenges in creating and updating product roadmaps. Most companies are still using traditional approaches which typically fail in such environments. Therefore, companies are seeking opportunities for new product roadmapping approaches.
Objective: This paper presents good practices to support companies better understand what factors are required to conduct a successful product roadmapping in a dynamic and uncertain market environment.
Method: Based on a grey literature review, essential aspects for conducting product roadmapping in a dynamic and uncertain market environment were identified. Expert workshops were then held with two researchers and three practitioners to develop best practices and the proposed approach for an outcome-driven roadmap. These results were then given to another set of practitioners and their perceptions were gathered through interviews.
Results: The study results in the development of 9 good practices that provide practitioners with insights into what aspects are crucial for product roadmapping in a dynamic and uncertain market environment. Moreover, we propose an approach to product roadmapping that includes providing a flexible structure and focusing on delivering value to the customer and the business. To ensure the latter, this approach consists of the main items outcome hypothesis, validated outcomes, and discovered outputs.
There is a growing consensus in research and practice that value-creating networks and ecosystems are supplementing the traditional distinction between the internal firm and market perspectives. To achieve joint value in ecosystems, it is crucial to align the various interests of independently acting ecosystem actors and create a common vision. In this paper, we argue that the ecosystem-wide use of product roadmaps may help with this. To get a better understanding of how roadmapping is conducted in the dynamic ecosystem environment, we systematize the main characteristics of product roadmaps and perform a conceptual comparison with the known challenges of ecosystem management. Comparing the two concepts of ecosystems and product roadmaps, we highlight the fit between the characteristics and objectives of the roadmaps and the challenges of ecosystem management. Hence, we propose to experiment with the ecosystem-wide use of product roadmaps as well as the empirical study of the challenges emerging in the process and the associated redesign of the roadmaps.
Theoretical foundation, effectiveness, and design artefact for machine learning service repositories
(2022)
Machine learning (ML) has played an important role in research in recent years. For companies that want to use ML, finding the algorithms and models that fit for their business is tedious. A review of the available literature on this problem indicates only a few research papers. Given this gap, the aim of this paper is to design an effective and easy-to-use ML service repository. The corresponding research is based on a multi-vocal literature analysis combined with design science research, addressing three research questions: (1) How is current white and gray literature on ML services structured with respect to repositories? (2) Which features are relevant for an effective ML service repository? (3) How is a prototype for an effective ML service repository conceptualized? Findings are relevant for the explanation of user acceptance of ML repositories. This is essential for corporate practice in order to create and use ML repositories effectively.
Today, companies face increasing market dynamics, rapidly evolving technologies, and rapid changes in customer behavior. Traditional approaches to product development typically fail in such environments and require companies to transform their often feature-driven mindset into a product-led mindset. A promising first step on the way to a product-led company is a better understanding of how product planning can be adapted to the requirements of an increasingly dynamic and uncertain market environment in the sense of product roadmapping. The authors developed the DEEP product roadmap assessment tool to help companies evaluate their current product roadmap practices and identify appropriate actions to transition to a more product-led company. Objective: The goal of this paper is to gain insight into the applicability and usefulness of version 1.1 of the DEEP model. In addition, the benefits, and implications of using the DEEP model in corporate contexts will be explored. Method: We conducted a multiple case study in which participants were observed using the DEEP model. We then interviewed each participant to understand their perceptions of the DEEP model. In addition, we conducted interviews with each company's product management department to learn how the application of the DEEP model influenced their attitudes toward product roadmapping. Results: The study showed that by applying the DEEP model, participants better understood which artifacts and methods were critical to product roadmapping success in a dynamic and uncertain market environment. In addition, the application of the DEEP model helped convince management and other stakeholders of the need to change current product roadmapping practices. The application also proved to be a suitable starting point for the transformation in the participating companies.