333.7 Natürliche Ressourcen, Energie und Umwelt
Refine
Document Type
- Journal article (8)
- Conference proceeding (3)
- Book chapter (2)
- Anthology (1)
Is part of the Bibliography
- yes (14)
Institute
- ESB Business School (6)
- Technik (4)
- Life Sciences (2)
- Informatik (1)
- Texoversum (1)
Publisher
Einige Ideen, Erfahrungen und Realitäten für die Studierenden und Bürger in Reutlingen. Zusammengestellt von 50 Studierenden 2020/21 und aus Beiträgen von 40 Institutionen und Unternehmen in und um Reutlingen.
Ein Versuch, sehr konkret am Tatsächlichen zu erklären, was zu mehr Nachhaltigkeit führt, in Reutlingen. Dabei bleibt nicht aus, auch auf Schwachstellen hinzuweisen.
Wenn Studierende und Bürger in den nächsten Jahren bewusst zu mehr Nachhaltigkeit bereit sind, so sind sie mit den Ideen und Realitäten in diesem Projekt auf einem guten Weg.
The food system represents a key industry for Europe and Germany in particular. However, it is also the single most significant contributor to climate and environmental change. A food system transformation is necessary to overcome the system’s major and constantly increasing challenges in the upcoming decades. One possible facilitator for this transformation are radical and disruptive innovations that start-ups develop. There are many challenges for start-ups in general and food start-ups in particular. Various support opportunities and resources are crucial to ensure the success of food start-ups. One aim of this study is to identify how the success of start-ups in the food system can be supported and further strengthened by actors in the innovation ecosystem in Germany. There is still room for improvement and collaboration toward a thriving innovation ecosystem. A successful innovation ecosystem is characterised by a well-organised, collaborative, and supportive environment with a vivid exchange between the members in the ecosystem. The interviewees confirmed this, and although the different actors are already cooperating, there is still room for improvement. The most common recommendation for improving cooperation is learning from other countries and bringing the best to Germany.
Up to now biorefinery concepts can hardly compete with the conventional production of fossil-based chemicals. On one hand, conventional chemical production has been optimised over many decades in terms of energy, yield and costs. Biorefineries, on the other hand, do not have the benefit of long-term experience and therefore have a huge potential for optimisation. This study deals with the economic evaluation of a newly developed biorefinery concept based on superheated steam (SHS) torrefaction of biomass residues with recovery of valuable platform chemicals. Two variants of the biorefinery were economically investigated. One variant supplies various platform chemicals and torrefied biomass. The second variant supplies thermal energy for external consumers in addition to platform chemicals. The results show that both variants can be operated profitably if the focus of the platform chemicals produced is on high quality and thus on the higher-priced segment. The economic analysis gives clear indications of the most important financial influencing parameters. The economic impact of integration into existing industrial structures is positive. With the analysis, a viable business model can be developed. Based on the results of the present study, an open-innovation platform is recommended for the further development and commercialisation of the novel biorefinery.
Within the last decade, research on torrefaction has gained increasing attention due to its ability to improve the physical properties and chemical composition of biomass residues for further energetic utilisation. While most of the research works focused on improving the energy density of the solid fraction to offer an ecological alternative to coal for energy applications, little attention was paid to the valorisation of the condensable gases as platform chemicals and its ecological relevance when compared to conventional production processes. Therefore, the present study focuses on the ecological evaluation of an innovative biorefinery concept that includes superheated steam drying and the torrefaction of biomass residues at ambient pressure, the recovery of volatiles and the valorisation/separation of several valuable platform chemicals. For a reference case and an alternative system design scenario, the ecological footprint was assessed, considering the use of different biomass residues. The results show that the newly developed process can compete with established bio-based and conventional production processes for furfural, 5-HMF and acetic acid in terms of the assessed environmental performance indicators. The requirements for further research on the synthesis of other promising platform chemicals and the necessary economic evaluation of the process were elaborated.
Business opportunities for energy providers to utilize flexible industrial demand are platform-based, connecting small and medium-sized enterprises (SMEs) to a virtual power plant (VPP) in complex ecosystems. Unlike in other VPPs, the focus is on participation, data, and control sovereignty for the SMEs. An exemplary application for an existing cement mill demonstrates positive margins. Viable VPP business models for small and medium-sized utilities include the “orchestrator,” i.e., adding value by linking services of specialized providers, the “integrator,” i.e., incorporating internal and external processes and resources, as well as the “white label user,” i.e., using a turn-key VPP from an exclusive cooperation partner.
Sustainable technologies are being increasingly used in various areas of human life. While they have a multitude of benefits, they are especially useful in health monitoring, especially for certain groups of people, such as the elderly. However, there are still several issues that need to be addressed before its use becomes widespread. This work aims to clarify the aspects that are of great importance for increasing the acceptance of the use of this type of technology in the elderly. In addition, we aim to clarify whether the technologies that are already available are able to ensure acceptable accuracy and whether they could replace some of the manual approaches that are currently being used. A two-week study with people 65 years of age and over was conducted to address the questions posed here, and the results were evaluated. It was demonstrated that simplicity of use and automatic functioning play a crucial role. It was also concluded that technology cannot yet completely replace traditional methods such as questionnaires in some areas. Although the technologies that were tested were classified as being “easy to use”, the elderly population in the current study indicated that they were not sure that they would use these technologies regularly in the long term because the added value is not always clear, among other issues. Therefore, awareness-raising must take place in parallel with the development of technologies and services.
Many scientific reports have warned about the catastrophic consequences of unchecked climate change, with the latest international report calling for emissions of climate pollutants to reach net zero by around 2050 (IPCC, 2018). Limiting warming to 1.5°C could save more than 100 million people from water shortages, as many as 2 billion people from dangerous heatwaves, and the majority of species from climate change extinction risks (IPCC, 2018; Warren et al., 2018). The actions taken to achieve these climate outcomes would generate benefits of more than $20 trillion while easing global economic inequality (Burke et al., 2018). Scientists make it clear that it is physically possible to meet these goals using today’s technologies (Holz et al., 2018). Yet emissions of climate pollutants continue to grow, reaching a new record high in 2018 (Jackson et al., 2018). Clearly, scientific evidence has failed to spark needed climate action. The question now is: what can?
Already more than 75 countries pledged to become climate neutral by 2050 and the share of global emissions falling into an emission pricing scheme has steeply increased over the past two years. Even where there are no direct implications for industry (yet), there is a series of subtle pressure points driving an increasing number of companies across the globe to work towards climate neutrality and pledging ambitious carbon reduction goals.
This article sheds light on what the pressure points are, what the subtle triggers and what the underlying considerations, as well as hoped-for benefits of industrial companies to achieve decarbonisation. The observations and ideas presented in this paper are derived from quantitative and qualitative data. The quantitative data was collected within the framework of Energy Efficiency Index of German Industry (EEI). The qualitative data has been collected from interviews in industrial organisations and media documents as well as from professional practice.
Not only societal, work force, supply chain and investor expectations play a large role, but also many strategic considerations which have the potential to make the business more resilient and profitable. Those companies that do not move towards decarbonisation on the other hand may face a costly late mover disadvantage.
This piece uncovers subtle interconnections helping stakeholders from industry and beyond to grasp opportunities and challenges ahead. Taking account of these calls for rethinking economic viability calculations and investment decision making. Doing so may subsequently lead to on-site carbon reduction measures being prioritised to decarbonise effectively.
This paper presents a novel emulation concept for the test of smart contracts and Distributed Ledger Technologies (DLT) in distribute control or energy economy tasks and use cases. The concept uses state of the art behavioral modeling tools such as Matlab Simulink but presents a possible way to solve the shortfall of Simulink in communicating to DLT-Nodes directly. This is solved through a middleware solution. After this, an example used in verifying the test bed is presented and the target demonstration object is described. Finally, the possible expansion of the system is discussed and presented.
This paper aims at presenting a solution that enables end customers of the energy system to participate in new local micro-energy-markets by providing them with a distributed, decentralized, transparent and secure Peer to Peer (P2P) payment system, which functions automatically applying new concepts of Machine to Machine (M2M) communication technologies. This work was performed within the German project VK_2G, funded by the DBU. The key results were: Providing means to perform microtransactions in a P2P fashion between end consumers and prosumers in local communities at low cost in a transparent and secure manner; Developing a platform with pre-defined smart contracts able to be tailored to different end customers ‘needs in an easy way and; Integrating both the market platform as well as the local control of generation and loads. This solution has been developed, integrated and tested in a laboratory prototype. This paper discusses this solution and presents the results of the first test.