Refine
Document Type
- Conference proceeding (2)
- Journal article (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- Elsevier (1)
- Hochschule Reutlingen (1)
- Springer (1)
The evaluation of the effectiveness of different machine learning algorithms on a publicly available database of signals derived from wearable devices is presented with the goal of optimizing human activity recognition and classification. Among the wide number of body signals we choose a couple of signals, namely photoplethysmographic (optically detected subcutaneous blood volume) and tri-axis acceleration signals that are easy to be simultaneously acquired using commercial widespread devices (e.g. smartwatches) as well as custom wearable wireless devices designed for sport, healthcare, or clinical purposes. To this end, two widely used algorithms (decision tree and k-nearest neighbor) were tested, and their performance were compared to two new recent algorithms (particle Bernstein and a Monte Carlo-based regression) both in terms of accuracy and processing time. A data preprocessing phase was also considered to improve the performance of the machine learning procedures, in order to reduce the problem size and a detailed analysis of the compression strategy and results is also presented.
The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.
This paper investigates the possibility to effectively monitor and control the respiratory action using a very simple and non invasive technique based on a single lightweight reduced-size wireless surface electromyography (sEMG) sensor placed below the sternum. The captured sEMG signal, due to the critical sensor position, is characterized by a low energy level and it is affected by motion artifacts and cardiac noise. In this work we present a preliminary study performed on adults for assessing the correlation of the spirometry signal and the sEMG signal after the removal of the superimposed heart signal. This study and the related findings could be useful in respiratory monitoring of preterm infants.