Refine
Document Type
- Conference Proceeding (27)
- Part of a Book (5)
- Article (1)
In this paper we present our work in progress on revisiting traditional DBMS mechanisms to manage space on native Flash and how it is administered by the DBA. Our observations and initial results show that: the standard logical database structures can be used for physical organization of data on native Flash; at the same time higher DBMS performance is achieved without incurring extra DBA overhead. Initial experimental evaluation indicates a 20% increase in transactional throughput under TPC-C, by performing intelligent data placement on Flash, less erase operations and thus better Flash longevity.
In this paper we build on our research in data management on native Flash storage. In particular we demonstrate the advantages of intelligent data placement strategies. To effectively manage phsical Flash space and organize the data on it, we utilize novel storage structures such as regions and groups. These are coupled to common DBMS logical structures, thus require no extra overhead for the DBA. The experimental results indicate an improvement of up to 2x, which doubles the longevity of Flash SSD. During the demonstration the audience can experience the advantages of the proposed approach on real Flash hardware.
In the present paper we demonstrate a novel approach to handling small updates on Flash called In-Place Appends (IPA). It allows the DBMS to revisit the traditional write behavior on Flash. Instead of writing whole database pages upon an update in an out-of-place manner on Flash, we transform those small updates into update deltas and append them to a reserved area on the very same physical Flash page. In doing so we utilize the commonly ignored fact that under certain conditions Flash memories can support in-place updates to Flash pages without a preceding erase operation.
The approach was implemented under Shore-MT and evaluated on real hardware. Under standard update-intensive workloads we observed 67% less page invalidations resulting in 80% lower garbage collection overhead, which yields a 45% increase in transactional throughput, while doubling Flash longevity at the same time. The IPA outperforms In-Page Logging (IPL) by more than 50%.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware – the OpenSSD Flash research platform. During the demonstration we allow the users to interact with the system and gain hands on experience of its performance under different demonstration scenarios. These involve various workloads such as TPC-B, TPC-C or TATP.
In the present paper we demonstrate the novel technique to apply the recently proposed approach of In-Place Appends – overwrites on Flash without a prior erase operation. IPA can be applied selectively: only to DB-objects that have frequent and relatively small updates. To do so we couple IPA to the concept of NoFTL regions, allowing the DBA to place update-intensive DB-objects into special IPA-enabled regions. The decision about region configuration can be (semi-)automated by an advisor analyzing DB-log files in the background.
We showcase a Shore-MT based prototype of the above approach, operating on real Flash hardware. During the demonstration we allow the users to interact with the system and gain hands-on experience under different demonstration scenarios.
Under update intensive workloads (TPC, LinkBench) small updates dominate the write behavior, e.g. 70% of all updates change less than 10 bytes across all TPC OLTP workloads. These are typically performed as in-place updates and result in random writes in page-granularity, causing major write-overhead on Flash storage, a write amplification of several hundred times and lower device longevity.
In this paper we propose an approach that transforms those small in-place updates into small update deltas that are appended to the original page. We utilize the commonly ignored fact that modern Flash memories (SLC, MLC, 3D NAND) can handle appends to already programmed physical pages by using various low-level techniques such as ISPP to avoid expensive erases and page migrations. Furthermore, we extend the traditional NSM page-layout with a delta-record area that can absorb those small updates. We propose a scheme to control the write behavior as well as the space allocation and sizing of database pages.
The proposed approach has been implemented under Shore- MT and evaluated on real Flash hardware (OpenSSD) and a Flash emulator. Compared to In-Page Logging it performs up to 62% less reads and writes and up to 74% less erases on a range of workloads. The experimental evaluation indicates: (i) significant reduction of erase operations resulting in twice the longevity of Flash devices under update-intensive workloads; (ii) 15%-60% lower read/write I/O latencies; (iii) up to 45% higher transactional throughput; (iv) 2x to 3x reduction in overall write
amplification.
New storage technologies, such as Flash and Non- Volatile Memories, with fundamentally different properties are appearing. Leveraging their performance and endurance requires a redesign of existing architecture and algorithms in modern high performance databases. Multi-Version Concurrency Control (MVCC) approaches in database systems, maintain multiple timestamped versions of a tuple. Once a transaction reads a tuple the database system tracks and returns the respective version eliminating lock-requests. Hence under MVCC reads are never blocked, which leverages well the excellent read performance (high throughput, low latency) of new storage technologies. Upon tuple updates, however, established implementations of MVCC approaches (such as Snapshot Isolation) lead to multiple random writes – caused by (i) creation of the new and (ii) in-place invalidation of the old version – thus generating suboptimal access patterns for the new storage media. The combination of an append based storage manager operating with tuple granularity and snapshot isolation addresses asymmetry and in-place updates. In this paper, we highlight novel aspects of log-based storage, in multi-version database systems on new storage media. We claim that multi-versioning and append-based storage can be used to effectively address asymmetry and endurance. We identify multi-versioning as the approach to address dataplacement in complex memory hierarchies. We focus on: version handling, (physical) version placement, compression and collocation of tuple versions on Flash storage and in complex memory hierarchies. We identify possible read- and cacherelated optimizations.
We introduce IPA-IDX – an approach to handle index modifications modern storage technologies (NVM, Flash) as physical in-place appends, using simplified physiological log records. IPA-IDX provides similar performance and longevity advantages for indexes as basic IPA [5] does for tables. The selective application of IPA-IDX and basic IPA to certain regions and objects, lowers the GC overhead by over 60%, while keeping the total space overhead to 2%. The combined effect of IPA and IPA-IDX increases performance by 28%.
When forecasting sales figures, not only the sales history but also the future price of a product will influence the sales quantity. At first sight, multivariate time series seem to be the appropriate model for this task. Nontheless, in real life history is not always repeatable, i.e. in the case of sales history there is only one price for a product at a given time. This complicates the design of a multivariate time series. However, for some seasonal or perishable products the price is rather a function of the expiration date than of the sales history. This additional information can help to design a more accurate and causal time series model. The proposed solution uses an univariate time series model but takes the price of a product as a parameter that influences systematically the prediction. The price influence is computed based on historical sales data using correlation analysis and adjustable price ranges to identify products with comparable history. Compared to other techniques this novel approach is easy to compute and allows to preset the price parameter for predictions and simulations. Tests with data from the Data Mining Cup 2012 demonstrate better results than established sophisticated time series methods.
In the present tutorial we perform a cross-cut analysis of database storage management from the perspective of modern storage technologies. We argue that neither the design of modern DBMS, nor the architecture of modern storage technologies are aligned with each other. Moreover, the majority of the systems rely on a complex multi-layer and compatibility oriented storage stack. The result is needlessly suboptimal DBMS performance, inefficient utilization, or significant write amplification due to outdated abstractions and interfaces. In the present tutorial we focus on the concept of native storage, which is storage operated without intermediate abstraction layers over an open native storage interface and is directly controlled by the DBMS.
Modern persistent Key/Value stores are designed to meet the demand for high transactional throughput and high data ingestion rates. Still, they rely on backwards-compatible storage stack and abstractions to ease space management, foster seamless proliferation and system integration. Their dependence on the traditional I/O stack has negative impact on performance, causes unacceptably high write-amplification, and limits the storage longevity.
In the present paper we present NoFTL KV, an approach that results in a lean I/O stack, integrating physical storage management natively in the Key/Value store. NoFTL-KV eliminates backwards compatibility, allowing the Key/Value store to directly consume the characteristics of modern storage technologies. NoFTLKV is implemented under RocksDB. The performance evaluation under LinkBench shows that NoFTL-KV improves transactional throughput by 33%, while response times improve up to 2.3x. Furthermore, NoFTL KV reduces write-amplification 19x and improves storage longevity by imately the same factor.