624 Ingenieurbau und Umwelttechnik
Refine
Document Type
- Journal article (7)
- Conference proceeding (1)
Language
- English (8)
Is part of the Bibliography
- yes (8)
Institute
- Life Sciences (5)
- Technik (2)
- ESB Business School (1)
Publisher
- Tech Science Press (4)
- Elsevier (2)
- IEEE (1)
- Taylor & Francis (1)
The majority of people in sub-Saharan Africa (SSA) rely on so-called “paratransit” for their mobility needs. The term refers to a large informal transport sector that runs independent of government, of which 83% comprises minibus taxis (MBT). MBT technology is often old and contribute significantly to climate change with their high carbon dioxide (CO2) emissions. Issues related to sustainability and climate change are becoming more important world-wide and hardly any attention is given to MBTs. Converting the MBTs from internal combustion engines (ICEs) to electric motors could be a possible solution. The existing power grid in SSA is largely based on fossil power plants and is unstable. This can be seen by frequent local power blackouts. To avoid further strain on the existing power grid, it would therefore make sense to charge the electric minibus taxis (eMBTs) through a grid consisting of renewable energies. A mobility map is created via simulations with collected data points of the MBTs. By using this mobility map, the energy demand of the eMBTs is calculated. Furthermore, a region-specific photovoltaic (PV) and wind simulation can be realised based on existing weather data, and a tool to size the supply system to charge the eMBTs is developed after all data has been collected. With the help of this work, it can be determined to what extent renewable energies such as PV and wind power can be used to support the transition from ICEs to electric engines in the MBT sector.
For optimization of production processes and product quality, often knowledge of the factors influencing the process outcome is compulsory. Thus, process analytical technology (PAT) that allows deeper insight into the process and results in a mathematical description of the process behavior as a simple function based on the most important process factors can help to achieve higher production efficiency and quality. The present study aims at characterizing a well-known industrial process, the transesterification reaction of rapeseed oil with methanol to produce fatty acid methyl esters (FAME) for usage as biodiesel in a continuous micro reactor set-up. To this end, a design of experiment approach is applied, where the effects of two process factors, the molar ratio and the total flow rate of the reactants, are investigated. The optimized process target response is the FAME mass fraction in the purified nonpolar phase of the product as a measure of reaction yield. The quantification is performed using attenuated total reflection infrared spectroscopy in combination with partial least squares regression. The data retrieved during the conduction of the DoE experimental plan were used for statistical analysis. A non-linear model indicating a synergistic interaction between the studied factors describes the reactor behavior with a high coefficient of determination (R²) of 0.9608. Thus, we applied a PAT approach to generate further insight into this established industrial process.
Traditional communication of research on climate change fails to encourage individual, corporate, and political leaders to take appropriate action. We argue that this problem is based on an overly simplistic unidirectional model of science communication. Conversely, theory shows that active learning processes are better suited to initiate and mobilize engagement among all stakeholders. Here, we integrate theoretical insights on active learning with empirical evidence from serious gaming: communication should be understood as an integral design feature that relates active learning on climate change to tangible action.
Here, the effects of substituting portions of fossil-based phenol in phenol formaldehyde resin by renewable lignin from two different sources are investigated using a factorial screening experimental design. Among the resins consumed by the wood-based industry, phenolics are one of the most important types used for impregnation, coating or gluing purposes. They are prepared by condensing phenol with formaldehyde (PF). One major use of PF is as matrix polymer for decorative laminates in exterior cladding and wet-room applications. Important requirements for such PFs are favorable flow properties (low viscosity), rapid curing behavior (high reactivity) and sufficient self-adhesion capacity (high residual curing potential). Partially substituting phenol in PF with bio-based phenolic co-reagents like lignin modifies the physicochemical properties of the resulting resin. In this study, phenol-formaldehyde formulations were synthesized where either 30% or 50% (in weight) of the phenol monomer were substituted by either sodium lignosulfonate or Kraft lignin. The effect of modifying the lignin material by phenolation before incorporation into the resin synthesis was also investigated. The resins so obtained were characterized by Fourier Transform Infra-Red (FTIR) spectroscopy, Size Exclusion Chromatography (SEC), Differential Scanning Calorimetry (DSC), rheology, and measurements of contact angle and surface tension using the Wilhelmy plate method and drop shape analysis.
Impregnated paper-based decorative laminates prepared from lignin-substituted phenolic resins
(2020)
High Pressure Laminates (HPL) panels consist of stacks of self-gluing paper sheets soaked with phenol-formaldehyde (PF) resins. An important requirement for such PFs is that they must rapidly penetrate and saturate the paper pores. Partially substituting phenol with bio-based phenolic chemicals like lignin changes the physico-chemical properties of the resin and affects its ability to penetrate the paper. In this study, PF formulations containing different proportions of lignosulfonate and kraft lignin were used to prepare paper-based laminates. The penetration of a Kraft paper sheet was characterized by a recently introduced, new device measuring the conductivity between both sides of the paper sheet after a drop of resin was placed on the surface and allowed to penetrate the sheet. The main target value measured was the time required for a specific resin to completely penetrate the defined paper sample (“penetration time”). This penetration time generally depends on the molecular weight distribution, the flow behavior and the polarity of the resin which in turn are dependent on the manufacturing conditions of the resin. In the present study, the influences of the three process factors: (1) type of lignin material used for substitution, (2) lignin modification by phenolation and (3) degree of phenol substitution on the penetration times of various lignin-phenolic hybrid impregnation resins were studied using a complete twolevel three-factorial experimental design. Thin laminates made with the resins diluted in methanol were mechanically tested in terms of tensile and flexural strains, and their cross-sections were studied by light microscopy.
Here, we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres. The composite was prepared either completely binder-less or bonded with 10% (w/w) of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide. The flexural modulus of elasticity, the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated. The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry (DSC) in combination with the iso-conversional kinetic analysis method of Vyazovkin to derive the curing conditions required for achieving completely cured resin. For the binderless Typha panels the best technological properties were achieved for panels with high density. By adding 10% of the binder resin the flexural strength and especially the water absorption were improved significantly.
In an effort to make the cultural and institutional aspects of energy efficiency in industrial organizations more visible, this article introduces a theoretical framework of decision-making processes. Taking a sociological perspective and viewing organizations as cultural systems embedded in wider social contexts, I have developed a multilevel framework addressing institutional, organizational, and individual dimensions shaping decisions on energy efficiency. The framework's development is based on qualitative empirical fieldwork and integrates insights into organizational theory; neo-institutional theory, the attention-based view of the firm, and organizational culture theories. I conclude that decisions on energy efficiency are results of problematization and theorization processes. These processes emerge between the institutional issue-field, the organization, and its members. The model explains decisions shaped by environment (external and material), organizational processes (energy-efficiency practices, climate and culture) and individuals’ characteristics. The framework serves several purposes: introducing a meta-theory of decision making, providing a concept for empirical analysis, and enabling connectivity to the research on barriers.
A vapor permeation processes for the separation of aromatic compounds from aliphatic compounds
(2014)
A number of rubbery and glassy membranes have been prepared and evaluated in vapor permeation experiments for separation of aromatic/aliphatic mixtures, using 5/95 (wt:wt) toluene/methylcyclohexane (MCH) as a model solution. Candidate membranes that met the required toluene/MCH selectivity of ≥ 10 were identified. The stability of the candidate membranes was tested by cycling the experiment between higher toluene concentrations and the original 5 wt% level. The best membrane produced has a toluene permeance of 280 gpu and a toluene/MCH selectivity of 13 when tested with a vapor feed of the model mixture at its boiling point and at atmospheric pressure. When a series of related membrane materials are compared, there is a sharp trade-off between membrane permeance and membrane selectivity. A process design study based on the experimental results was conducted. The best preliminary membrane design uses 45% of the energy of a conventional distillation process.