600 Technik, Medizin, angewandte Wissenschaften
Refine
Document Type
- Journal article (21)
Is part of the Bibliography
- yes (21)
Institute
- ESB Business School (12)
- Life Sciences (4)
- Technik (3)
- Texoversum (2)
Publisher
- Hanser (5)
- Elsevier (4)
- MDPI (4)
- Hanser ; GBI Genios (1)
- Hanser ; GBI-Genios (1)
- International Federation of Automatic Control (1)
- PC Technology Center (1)
- Royal Society of Chemistry (1)
- Springer-VDI-Verl. (1)
- Verl. Textilplus AG (1)
Artificial intelligence is considered to be a significant technology for driving the future evolution of smart manufacturing environments. At the same time, automated guided vehicles (AGVs) play an essential role in manufacturing systems due to their potential to improve internal logistics by increasing production flexibility. Thereby, the productivity of the entire system relies on the quality of the schedule, which can achieve production cost savings by minimizing delays and the total makespan. However, traditional scheduling algorithms often have difficulties in adapting to changing environment conditions, and the performance of a selected algorithm depends on the individual scheduling problem. Therefore, this paper aimed to analyze the scheduling problem classes of AGVs by applying design science research to develop an algorithm selection approach. The designed artifact addressed a catalogue of characteristics that used several machine learning algorithms to find the optimal solution strategy for the intended scheduling problem. The contribution of this paper is the creation of an algorithm selection method that automatically selects a scheduling algorithm, depending on the problem class and the algorithm space. In this way, production efficiency can be increased by dynamically adapting the AGV schedules. A computational study with benchmark literature instances unveiled the successful implementation of constraint programming solvers for solving JSSP and FJSSP scheduling problems and machine learning algorithms for predicting the most promising solver. The performance of the solvers strongly depended on the given problem class and the problem instance. Consequently, the overall production performance increased by selecting the algorithms per instance. A field experiment in the learning factory at Reutlingen University enabled the validation of the approach within a running production scenario.
Globalisation, shorter product life cycles, and increasing product varieties have led to complex supply chains. At the same time, there is a growing interest of customers and governments in having a greater transparency of brands, manufacturers, and producers throughout the supply chain. Due to the complex structure of collaborative manufacturing networks, the increase of supply chain transparency is a challenge for manufacturing companies. The blockchain technology offers an innovative solution to increase the transparency, security, authenticity, and auditability of products. However, there are still uncertainties when applying the blockchain technology to manufacturing scenarios and thus enable all stakeholders to trace back each component of an assembled product. This paper proposes a framework design to increase the transparency and auditability of products in collaborative manufacturing networks by adopting the blockchain technology. In this context, each component of a product is marked with a unique identification number generated by blockchain-based smart contracts. In this way, a transparent auditability of assembled products and their components can be achieved for all stakeholders, including the custome.
Der Anteil mittelständischer Unternehmen, die Standorte im Ausland unterhalten, nimmt seit einigen Jahren zu. Oft finden Auslandsaktivitäten dieser Art in Niedriglohnländern statt. Dort ergeben sich u.a durch die infrastrukturellen Gegebenheiten und durch die verfügbaren Personalressourcen diverse Herausforderungen, insbesondere für die Produktivitätsermittlung und -bewertung innerhalb der Produktion. Dieser Beitrag soll für diese Herausforderungen geeignete Technologien und eine mögliche Vorgehensweise für deren Auswahl vor dem Hintergrund der ländertypischen Herausforderungen aufzeigen.
Der Digitale Zwilling ist ein Technologie-Trendthema mit großen Potenzialen in einer Vielzahl von Anwendungsbereichen – insbesondere für produzierende Unternehmen. Eine Studie des Reutlinger Zentrums Industrie 4.0 beschäftigt sich mit heutigen und zukünftigen Anwendungsmöglichkeiten von Digitalen Zwillingen und gibt Impulse für eine schrittweise Implementierung im Unternehmen.
Aimed at the problem that the accuracy of face image classification in complex environment is not high, a network model F-Net suitable for aesthetic classification of face images is proposed. Based on LeNet-5, the model uses convolutional layers to extract facial image features in complex backgrounds, optimized parameters in the network model, and changes the number of convolutional layers and fully connected layer feature elements in the model. The experimental results show that the F-Net network model proposed in this paper has a face image classifation accuracy of 73% in complex environment background, which is better than other classical convolutional neural network classification models.
The aim of this study was to predefine the pore structure of β-tricalcium phosphate (β-TCP) scaffolds with different macro pore sizes (500, 750, and 1000 µm), to characterize β-TCP scaffolds, and to investigate the growth behavior of cells within these scaffolds. The lead structures for directional bone growth (sacrificial structures) were produced from polylactide (PLA) using the fused deposition modeling techniques. The molds were then filled with β-TCP slurry and sintered at 1250° C, whereby the lead structures (voids) were burnt out. The scaffolds were mechanically characterized (native and after incubation in simulated body fluid (SBF) for 28 d). In addition, biocompatibility was investigated by live/dead, cell proliferation and lactate dehydrogenase assays.
The present publication reports the purification effort of two natural bone blocks, that is, an allogeneic bone block (maxgraft®, botiss biomaterials GmbH, Zossen, Germany) and a xenogeneic block (SMARTBONE®, IBI S.A., Mezzovico Vira, Switzerland) in addition to previously published results based on histology. Furthermore, specialized scanning electron microscopy (SEM) and in vitro analyses (XTT, BrdU, LDH) for testing of the cytocompatibility based on ISO 10993-5/-12 have been conducted. The microscopic analyses showed that both bone blocks possess a trabecular structure with a lamellar subarrangement. In the case of the xenogeneic bone block, only minor remnants of collagenous structures were found, while in contrast high amounts of collagen were found associated with the allogeneic bone matrix. Furthermore, only island-like remnants of the polymer coating in case of the xenogeneic bone substitute seemed to be detectable. Finally, no remaining cells or cellular remnants were found in both bone blocks. The in vitro analyses showed that both bone blocks are biocompatible. Altogether, the purification level of both bone blocks seems to be favorable for bone tissue regeneration without the risk for inflammatory responses or graft rejection. Moreover, the analysis of the maxgraft® bone block showed that the underlying purification process allows for preserving not only the calcified bone matrix but also high amounts of the intertrabecular collagen matrix.
Zur Entwicklung einer Sofortpreiskalkulation für CNC-Drehteile werden Machine-Learning-Ansätze sowie ein deterministischer Algorithmus untersucht. Der deterministische Algorithmus funktioniert ausschließlich für Drehteile mit geringer Komplexität. Die Machine Learning Modelle hingegen sind zukunftsfähiger, da die ersten Ergebnisse bereits sehr geringe Abweichungswerte zu den festgelegten Referenzpreisen erreichen können. Mit steigendem Datenaufkommen können beide Machine-Learning-Modelle mit geringem Aufwand weiter verbessert werden.
In recent years, the numer of hybrid work systems using human robot collaboration (HRC) increased in industrial production environments - enhancing productivity while reducing work-related burden. Despite growing availability of HRC-suitable manipulation and safety technology, tools and techniques facilitating the design, planning and implementation process are still lacking. System engineers who strive to implement technically feasible, ergonomically meaningful and economically beneficial HRC application need to make design and technology decisions in various subject areas, whereas the design alternatives per morphological analysis is applied to establish a description model that can serve as both a supporting design guideline for future HRC application of value-adding, industrial quality as well as a tool to characterize and compare existing applications. It focuses on HRC within assembly processes, and illustrates the complexity of HRC applications in a comprehensible manner through its multi-dimensional structure. The morphology has been validated through its application on various existing industrial HRC applications, research demonstrators and interviews of experts from academia.
Water jacket systems are routinely used to control the temperature of Petri dish cell culture chambers. Despite their widespread use, the thermal characteristics of such systems have not been fully investigated. In this study, we conducted a comprehensive set of theoretical, numerical and experimental analyses to investigate the thermal characteristics of Petri dish chambers under stable and transient conditions. In particular, we investigated the temperature gradient along the radial axis of the Petri dish under stable conditions, and the transition period under transient conditions. Our studies indicate a radial temperature gradient of 3.3 °C along with a transition period of 27.5 min when increasing the sample temperature from 37 to 45 °C for a standard 35 mm diameter Petri dish. We characterized the temperature gradient and transition period under various operational, geometric, and environmental conditions. Under stable conditions, reducing the diameter of the Petri dish and incorporating a heater underneath the Petri dish can effectively reduce the temperature gradient across the sample. In comparison, under transient conditions, reducing the diameter of the Petri dish, reducing sample volume, and using glass Petri dish chambers can reduce the transition period.