610 Medizin, Gesundheit
Refine
Document Type
- Conference proceeding (78)
- Journal article (76)
- Book chapter (5)
- Book (1)
- Doctoral Thesis (1)
- Patent / Standard / Guidelines (1)
- Report (1)
Is part of the Bibliography
- yes (163)
Institute
- Informatik (103)
- Life Sciences (46)
- Technik (8)
- ESB Business School (5)
Publisher
- Springer (36)
- Hochschule Reutlingen (17)
- Elsevier (8)
- Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e.V. (7)
- Università Politecnica delle Marche (7)
- IOP (6)
- MDPI (6)
- IEEE (5)
- SPIE (5)
- De Gruyter (4)
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively.
The scoring of sleep stages is one of the essential tasks in sleep analysis. Since a manual procedure requires considerable human and financial resources, and incorporates some subjectivity, an automated approach could result in several advantages. There have been many developments in this area, and in order to provide a comprehensive overview, it is essential to review relevant recent works and summarise the characteristics of the approaches, which is the main aim of this article. To achieve it, we examined articles published between 2018 and 2022 that dealt with the automated scoring of sleep stages. In the final selection for in-depth analysis, 125 articles were included after reviewing a total of 515 publications. The results revealed that automatic scoring demonstrates good quality (with Cohen's kappa up to over 0.80 and accuracy up to over 90%) in analysing EEG/EEG + EOG + EMG signals. At the same time, it should be noted that there has been no breakthrough in the quality of results using these signals in recent years. Systems involving other signals that could potentially be acquired more conveniently for the user (e.g. respiratory, cardiac or movement signals) remain more challenging in the implementation with a high level of reliability but have considerable innovation capability. In general, automatic sleep stage scoring has excellent potential to assist medical professionals while providing an objective assessment.
Mobile monitoring of outpatients during cancer therapy becomes possible through technological advancements. This study leveraged a new remote patient monitoring app for in-between systemic therapy sessions. Patients’ evaluation showed that the handling is feasible. Clinical implementation must consider an adaptive development cycle for reliable operations.
Sleep is extremely important for physical and mental health. Although polysomnography is an established approach in sleep analysis, it is quite intrusive and expensive. Consequently, developing a non-invasive and non-intrusive home sleep monitoring system with minimal influence on patients, that can reliably and accurately measure cardiorespiratory parameters, is of great interest. The aim of this study is to validate a non-invasive and unobtrusive cardiorespiratory parameter monitoring system based on an accelerometer sensor. This system includes a special holder to install the system under the bed mattress. The additional aim is to determine the optimum relative system position (in relation to the subject) at which the most accurate and precise values of measured parameters could be achieved. The data were collected from 23 subjects (13 males and 10 females). The obtained ballistocardiogram signal was sequentially processed using a sixth-order Butterworth bandpass filter and a moving average filter. As a result, an average error (compared to reference values) of 2.24 beats per minute for heart rate and 1.52 breaths per minute for respiratory rate was achieved, regardless of the subject’s sleep position. For males and females, the errors were 2.28 bpm and 2.19 bpm for heart rate and 1.41 rpm and 1.30 rpm for respiratory rate. We determined that placing the sensor and system at chest level is the preferred configuration for cardiorespiratory measurement. Further studies of the system’s performance in larger groups of subjects are required, despite the promising results of the current tests in healthy subjects.
In order to ensure sufficient recovery of the human body and brain, healthy sleep is indispensable. For this purpose, appropriate therapy should be initiated at an early stage in the case of sleep disorders. For some sleep disorders (e.g., insomnia), a sleep diary is essential for diagnosis and therapy monitoring. However, subjective measurement with a sleep diary has several disadvantages, requiring regular action from the user and leading to decreased comfort and potential data loss. To automate sleep monitoring and increase user comfort, one could consider replacing a sleep diary with an automatic measurement, such as a smartwatch, which would not disturb sleep. To obtain accurate results on the evaluation of the possibility of such a replacement, a field study was conducted with a total of 166 overnight recordings, followed by an analysis of the results. In this evaluation, objective sleep measurement with a Samsung Galaxy Watch 4 was compared to a subjective approach with a sleep diary, which is a standard method in sleep medicine. The focus was on comparing four relevant sleep characteristics: falling asleep time, waking up time, total sleep time (TST), and sleep efficiency (SE). After evaluating the results, it was concluded that a smartwatch could replace subjective measurement to determine falling asleep and waking up time, considering some level of inaccuracy. In the case of SE, substitution was also proved to be possible. However, some individual recordings showed a higher discrepancy in results between the two approaches. For its part, the evaluation of the TST measurement currently does not allow us to recommend substituting the measurement method for this sleep parameter. The appropriateness of replacing sleep diary measurement with a smartwatch depends on the acceptable levels of discrepancy. We propose four levels of similarity of results, defining ranges of absolute differences between objective and subjective measurements. By considering the values in the provided table and knowing the required accuracy, it is possible to determine the suitability of substitution in each individual case. The introduction of a “similarity level” parameter increases the adaptability and reusability of study findings in individual practical cases.
Background: Polysomnography (PSG) is the gold standard for detecting obstructive sleep apnea (OSA). However, this technique has many disadvantages when using it outside the hospital or for daily use. Portable monitors (PMs) aim to streamline the OSA detection process through deep learning (DL).
Materials and methods: We studied how to detect OSA events and calculate the apnea-hypopnea index (AHI) by using deep learning models that aim to be implemented on PMs. Several deep learning models are presented after being trained on polysomnography data from the National Sleep Research Resource (NSRR) repository. The best hyperparameters for the DL architecture are presented. In addition, emphasis is focused on model explainability techniques, concretely on Gradient-weighted Class Activation Mapping (Grad-CAM).
Results: The results for the best DL model are presented and analyzed. The interpretability of the DL model is also analyzed by studying the regions of the signals that are most relevant for the model to make the decision. The model that yields the best result is a one-dimensional convolutional neural network (1D-CNN) with 84.3% accuracy.
Conclusion: The use of PMs using machine learning techniques for detecting OSA events still has a long way to go. However, our method for developing explainable DL models demonstrates that PMs appear to be a promising alternative to PSG in the future for the detection of obstructive apnea events and the automatic calculation of AHI.
In dieser Arbeit werden Anforderungen an ein digitales Referenzmodell der Cell and Gene Therapy (CGT) Supply Chain mittels systematischer Literaturrecherche unter partieller Anwendung der Preferred-Reporting-Items-for-Systematic-Reviews-and-Meta-Analyses(PRISMA)-2020-Methode erarbeitet und erläutert. Die Ergebnisse der Literaturrecherche untermauern, dass die CGT Supply Chain standardisierte und automatisierte Prozesse benötigt, gewissen Transportanforderungen gerecht werden sowie eine lückenlose Rückverfolgbarkeit gewährleisten können muss. Die Anforderungen an das Referenzmodell lehnen sich z. T. an die Anforderungen des klassischen Supply-Chain-Operations-Reference(SCOR)-Modells an, bedürfen jedoch einer Veränderung und Weiterentwicklung unter Beachtung der Besonderheiten der CGT Supply Chain. Auf Basis eines Referenzmodells für die CGT Supply Chain, das die aus dieser Arbeit identifizierten Anforderungen beachtet, kann eine übergeordnete Managementplattform aufgebaut werden. Mit der digitalen Abbildung und Vernetzung aller Aktivitäten ist der Grundstein für die Integration in ein Enterprise-Resource-Planning(ERP)-System zum effektiven Data und Process Mining gelegt. Durch eine zunehmend bessere Datenqualität und -quantität entlang der Prozesse der CGT Supply Chain lassen sich verstärkt Informationen über die Prozesse selbst generieren, aus denen weitere Verbesserungsansätze hervorgehen. Eine CGT-Managementplattform bildet demnach die Grundlage für alle Prozesse innerhalb der CGT Supply Chain für einen kontinuierlichen Verbesserungsprozess.
Motivation
In order to enable context-aware behavior of surgical assistance systems, the acquisition of various information about the current intraoperative situation is crucial. To achieve this, the complex task of situation recognition can be delegated to a specialized system. Consequently, a standardized interface is required for the seamless transfer of the recognized contextual information to the assistance systems, enabling them to adapt accordingly.
Methods
Our group analyzed four medical interface standards to determine their suitability for exchanging intraoperative contextual information. The assessment was based on a harmonized data and service model derived from the requirements of expected context-aware use cases. The Digital Imaging and Communications in Medicine (DICOM) and IEEE 11073 for Service-oriented Device Connectivity (SDC) were identified as the most appropriate standards.
Results
We specified how DICOM Unified Procedure Steps (UPS), can be used to effectively communicate contextual information. We proposed the inclusion of attributes to formalize different granularity levels of the surgical workflow.
Conclusions
DICOM UPS SOP classes can be used for the exchange of intraoperative contextual information between a situation recognition system and surgical assistance systems. This can pave the way for vendor-independent context awareness in the OR, leading to targeted assistance of the surgical team and an improvement of the surgical workflow.
Due to the wide variety of benign and malignant salivary gland tumors, classification and malignant behavior determination based on histomorphological criteria can be difficult and sometimes impossible. Spectroscopical procedures can acquire molecular biological information without destroying the tissue within the measurement processes. Since several tissue preparation procedures exist, our study investigated the impact of these preparations on the chemical composition of healthy and tumorous salivary gland tissue by Fourier-transform infrared (FTIR) microspectroscopy. Sequential tissue cross-sections were prepared from native, formalin-fixed and formalin-fixed paraffin-embedded (FFPE) tissue and analyzed. The FFPE cross-sections were dewaxed and remeasured. By using principal component analysis (PCA) combined with a discriminant analysis (DA), robust models for the distinction of sample preparations were built individually for each parotid tissue type. As a result, the PCA-DA model evaluation showed a high similarity between native and formalin-fixed tissues based on their chemical composition. Thus, formalin-fixed tissues are highly representative of the native samples and facilitate a transfer from scientific laboratory analysis into the clinical routine due to their robust nature. Furthermore, the dewaxing of the cross-sections entails the loss of molecular information. Our study successfully demonstrated how FTIR microspectroscopy can be used as a powerful tool within existing clinical workflows.
Purpose
Artificial intelligence (AI), in particular deep learning (DL), has achieved remarkable results for medical image analysis in several applications. Yet the lack of human-like explanations of such systems is considered the principal restriction before utilizing these methods in clinical practice (Yang, Ye, & Xia, 2022).
Methods
Explainable Artificial Intelligence (XAI) provides a human-explainable and interpretable description of the “black-box” nature of DL (Gulum, Trombley, & Kantardzic, 2021). An effective XAI diagnosis generator, namely NeuroXAI (refer to Fig. 1), has been developed to extract 3D explanations from convolutional neural networks (CNN) models of brain gliomas (Zeineldin et al., 2022). By providing visual justification maps, NeuroXAI can help make DL models transparent and thus increase the trust of medical experts.
Results
NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e. image classification and segmentation using magnetic resonance imaging (MRI). Visual attention maps of multiple XAI methods have been generated and compared for both applications, which could help to provide transparency about the performance of DL systems.
Conclusion
NeuroXAI helps to understand the prediction process of 3D CNN networks for brain glioma using human-understandable explanations. Results revealed that the investigated DL models behave in a logical human-like manner and can improve the analytical process of the MRI images systematically. Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist medical professionals in the detection and diagnosis of brain tumors. NeuroXAI code is publicly accessible at https://github.com/razeineldin/NeuroXAI