610 Medizin, Gesundheit
Refine
Document Type
- Conference Proceeding (74)
- Article (69)
- Part of a Book (5)
- Book (1)
- Doctoral Thesis (1)
- Patent / Norm / Richtlinie (1)
- Report (1)
Is part of the Bibliography
- yes (152)
Institute
- Informatik (95)
- Life Sciences (44)
- Technik (8)
- ESB Business School (4)
Publisher
- Springer (34)
- Hochschule Reutlingen (21)
- Università Politecnica delle Marche (7)
- Elsevier (6)
- IOP (6)
- IEEE (5)
- De Gruyter (4)
- SPIE (4)
- University of Colorado (4)
- BioMed Central (3)
Identifikation von Schlaf- und Wachzuständen durch die Auswertung von Atem- und Bewegungssignalen
(2021)
Perforations of the tympanic membrane (TM) can occur as a result of injury or inflammation of the middle ear. These perforations can lead to conductive hearing loss (HL), where in some cases the magnitude of HL exceeds that attributable to the observed TM perforation alone. We aim with this study to better understand the effects of location and size of TM perforations on the sound transmitting properties of the middle ear.
The middle ear transfer function (METF) of six human temporal bones (TB; freshly frozen specimen of body donors) were compared before and after perforation of the TM at different locations (anterior or posterior lower quadrant) and of different sizes (1mm, ¼ of the TM, ½ of the TM, and full ablation). The
METF were correlated with a Finite Element (FE) model of the middle ear, in which similar alterations were simulated.
The measured and simulated FE model METFs exhibited frequency and perforation size dependent amplitude losses at all locations and severities. In direct comparison, posterior TM perforations affected the transmission properties to a larger degree than perforations of the anterior quadrant. This could possibly be caused by an asymmetry of the TM, where the malleus-incus complex rotates and results in larger deflections in the posterior TM half than in the anterior TM half. The FE model of the TM with a sealed cavity suggest that small perforations result in a decrease of TM rigidity and thus to an increase in oscillation amplitude of the TM, mostly above 1 kHz.
The location and size of TM perforations influence the METF in a reproducible way. Correlating our data with the FE model could help to better understand the pathologic mechanisms of middle-ear diseases. If small TM perforations with uncharacteristically significant HL are observed in daily clinical practice, additional middle ear pathologies should be considered. Further investigations on the loss of TM pretension due to perforations may be informative.
In order to evaluate the performance of different stapes prosthesis types, a coupled finite element (FE) model of human ear was developed. First, the middle-ear FE model was developed and validated using the middle-ear transfer function measurements available in literature including pathological cases. Then, the inner-ear FE model was developed and validated using tonotopy, impedance, and level of cochlea amplification curves from literature. Both models are based on pre-existing research with some improvements and were combined into one coupled FE model. The stapes in the coupled FE ear model was replaced with a model of a stapes prosthesis to create a reconstructed ear model that can be used to estimate how different types of protheses perform relative to each other as well as to the natural ear. This will help in designing of new innovative types of stapes prostheses or any other type of middle-ear prostheses as well as to improve the ones that are already available on the market.
Simulation models of the middle ear have rarely been used for diagnostic purposes due to their limited predictive ability with respect to pathologies. One big challenge is the large uncertainty and ambiguity in the choice of material parameters of the model.
Typically, the model parameters are determined by fitting simulation results to validation measurements. In a previous study, it was shown that fitting the model parameters of a finite-element model using the middle-ear transfer function and various other measurable output variables from normal ears alone is not sufficient to obtain a good predictive ability of the model on pathological middle-ear conditions. However, the inclusion of validation measurements on one pathological case resulted in a very good predictive ability also for other pathological cases. Although the found parameter set was plausible in all aspects, it was not yet possible to draw conclusions about the uniqueness and the accuracy or the uncertainty of the parameter set.
To answer these questions, statistical solution approaches are used in this study. Using the Monte Carlo method, a large number of plausible model data sets are generated that correctly represent the normal and pathological middle-ear characteristics in terms of various output variables like e.g., impedance, reflectance, umbo, and stapes transfer function. Subsequent principal component analyses (PCA) allow to draw conclusions about correlations, quantitative limits and statistical density of parameter values.
Furthermore, applying inverse PCA yields numerous plausible parameterizations of the middle-ear model, which can be used for data augmentation and training of a neural network which is capable of distinguishing between a normal middle ear and pathologies like otosclerosis, malleus fixation, and disarticulation based on objectively measured quantities like impedance, reflectance, and umbo velocity.
Rational behavior is a standard assumption in science. Indeed, rationality is required for environmental action towards net-zero emissions or public health interventions during the SARS-CoV-2 pandemic. Yet, little is known about the elements of rationality. This paper explores a dualism of rationality comprised of optimality and consistency. By designing a new guessing game, we experimentally uncover and disentangle two building blocks of human rationality: the notions of optimality and consistency. We find evidence that rationality is largely associated to optimality and weakly to consistency. Remarkably, under uncertainty, rationality gradually shifts to a heuristic notion. Our findings provide insights to better understand human decision making.
The hearing contact lens® (HCL) is a new type of hearing aid devices. One of its main components is a piezo-electric actuator. In order to evaluate and maximize the HCL’s performance, a model of the HCL coupled to the middle ear was developed using finite element approach. The model was validated step by step starting with the HCL only. To validate the HCL model, vibrational measurements on the HCL were performed using a Laser-Doppler-Vibrometer (LDV). Then, a silicone cap was placed onto the HCL to provide an interface between the HCL and the tympanic membrane of the middle-ear model and additional LDV measurements on temporal bones were performed to validate the coupled model. The coupled model was used to evaluate the equivalent sound pressure of the HCL. Moreover, a deeper insight was gained into the contact between the HCL and tympanic membrane and its effects on the HCL performance. The model can be used to investigate the sensitivity of geometrical and material parameters with respect to performance measures of the HCL and evaluate the feedback behavior.
Purpose
Supporting the surgeon during surgery is one of the main goals of intelligent ORs. The OR-Pad project aims to optimize the information flow within the perioperative area. A shared information space should enable appropriate preparation and provision of relevant information at any time before, during, and after surgery.
Methods
Based on previous work on an interaction concept and system architecture for the sterile OR-Pad system, we designed a user interface for mobile and intraoperative (stationary) use, focusing on the most important functionalities like clear information provision to reduce information overload. The concepts were transferred into a high-fidelity prototype for demonstration purposes. The prototype was evaluated from different perspectives, including a usability study.
Results
The prototype’s central element is a timeline displaying all available case information chronologically, like radiological images, labor findings, or notes. This information space can be adapted for individual purposes (e.g., highlighting a tumor, filtering for own material). With the mobile and intraoperative mode of the system, relevant information can be added, preselected, viewed, and extended during the perioperative process. Overall, the evaluation showed good results and confirmed the vision of the information system.
Conclusion
The high-fidelity prototype of the information system OR-Pad focuses on supporting the surgeon via a timeline making all available case information accessible before, during, and after surgery. The information space can be personalized to enable targeted support. Further development is reasonable to optimize the approach and address missing or insufficient aspects, like the holding arm and sterility concept or new desired features.
Background
Personalized medicine requires the integration and analysis of vast amounts of patient data to realize individualized care. With Surgomics, we aim to facilitate personalized therapy recommendations in surgery by integration of intraoperative surgical data and their analysis with machine learning methods to leverage the potential of this data in analogy to Radiomics and Genomics.
Methods
We defined Surgomics as the entirety of surgomic features that are process characteristics of a surgical procedure automatically derived from multimodal intraoperative data to quantify processes in the operating room. In a multidisciplinary team we discussed potential data sources like endoscopic videos, vital sign monitoring, medical devices and instruments and respective surgomic features. Subsequently, an online questionnaire was sent to experts from surgery and (computer) science at multiple centers for rating the features’ clinical relevance and technical feasibility.
Results
In total, 52 surgomic features were identified and assigned to eight feature categories. Based on the expert survey (n = 66 participants) the feature category with the highest clinical relevance as rated by surgeons was “surgical skill and quality of performance” for morbidity and mortality (9.0 ± 1.3 on a numerical rating scale from 1 to 10) as well as for long-term (oncological) outcome (8.2 ± 1.8). The feature category with the highest feasibility to be automatically extracted as rated by (computer) scientists was “Instrument” (8.5 ± 1.7). Among the surgomic features ranked as most relevant in their respective category were “intraoperative adverse events”, “action performed with instruments”, “vital sign monitoring”, and “difficulty of surgery”.
Conclusion
Surgomics is a promising concept for the analysis of intraoperative data. Surgomics may be used together with preoperative features from clinical data and Radiomics to predict postoperative morbidity, mortality and long-term outcome, as well as to provide tailored feedback for surgeons.
Personalized remote healthcare monitoring is in continuous development due to the technology improvements of sensors and wearable electronic systems. A state of the art of research works on wearable sensors for healthcare applications is presented in this work. Furthermore, a state of the art of wearable devices, chest and wrist band and smartwatches available on the market for health and sport monitoring is presented in this paper. Many activity trackers are commercially available. The prices are continuously reducing and the performances are improving, but commercial devices do not provide raw data and are therefore not useful for research purposes.
Gamification is one of the recognized methods of motivating people in various life processes, and it has spread to many spheres of life, including healthcare. This article proposes a system design for long-term care patients using the method mentioned. The proposed system aims to increase patient engagement in the treatment and rehabilitation process via gamification. Literature research on available and earlier proposed systems was conducted to develop a suited system design. The primary target group includes bedridden patients and a sedentary lifestyle (predominantly lying in bed). One of the main criteria for selecting a suitable option was its contactless realization for the mentioned target groups in long-term care cases. As a result, we developed the system design for hardware and software that could prevent bedsores and other health problems from occurring because of low activity. The proposed design can be tested in hospitals, nursing homes, and rehabilitation centers.