Refine
Document Type
- Conference proceeding (30)
- Journal article (18)
- Book chapter (4)
Is part of the Bibliography
- yes (52)
Institute
- Informatik (52)
Publisher
- Elsevier (15)
- Springer (15)
- IEEE (7)
- Università Politecnica delle Marche (5)
- Hochschule Reutlingen (3)
- MDPI (3)
- HTWG Konstanz (2)
- Cuvillier Verlag (1)
- Pabst Science Publishers (1)
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.
To analyze the humans’ sleep it is necessary as to identify the sleep stages, occurring during the sleep, their durations and sleep cycles. The gold standard procedure for this approach is polysomnography (PSG), which classify the sleep stages based on Rechtschaffen and Kales (R-K) method. This method aside the advantages as high accuracy has however some disadvantages, among others time-consuming and uncomfortable for the patient procedure. Therefore, the development of further methods for the sleep classification in addition to PSG is a promising topic for the investigation and this work has as its aim the presentation of possible ways and goals for this development.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.
Sleep quality and in general, behavior in bed can be detected using a sleep state analysis. These results can help a subject to regulate sleep and recognize different sleeping disorders. In this work, a sensor grid for pressure and movement detection supporting sleep phase analysis is proposed. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this project is a non invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable actigraphy devices tends to be uncomfortable. Besides this fact, they are also very expensive. The system represented in this work classifies respiration and body movement with only one type of sensor and also in a non invasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed the potential for classification of breathing rate and body movements. Although previous researches show the use of pressure sensors in recognizing posture and breathing, they have been mostly used by positioning the sensors between the mattress and bedsheet. This project however, shows an innovative way to position the sensors under the mattress.
Assistive environments are entering our homes faster than ever. However, there are still various barriers to be broken. One of the crucial points is a personalization of offered services and integration of assistive technologies in common objects and therefore in a regular daily routine. Recognition of sleep patterns for the preliminary sleep study is one of the Health services that could be performed in an undisturbing way. This article proposes the hardware system for the measurement of bio-vital signals necessary for initial sleep study in a nonobtrusive way. The first results confirm the potential of measurement of breathing and movement signals with the proposed system.
The goal of this paper pretends to show how a bed system with an embedded system with sensor is able to analyze a person’s movement, breathing and recognizing the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors.
This document presents an algorithm for a nonobtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.