Refine
Document Type
- Conference proceeding (26)
- Journal article (17)
- Book chapter (4)
Is part of the Bibliography
- yes (47)
Institute
- Informatik (47)
Publisher
- Springer (15)
- Elsevier (11)
- IEEE (6)
- Università Politecnica delle Marche (5)
- Hochschule Reutlingen (3)
- MDPI (3)
- HTWG Konstanz (2)
- Cuvillier Verlag (1)
- Pabst Science Publishers (1)
This work is a study about a comparison of survey tools and it should help developers in selecting a suited tool for application in an AAL environment. The first step was to identify the basic required functionality of the survey tools used for AAL technologies and to compare these tools by their functionality and assignments. The comparative study was derived from the data obtained, previous literature studies and further technical data. A list of requirements was stated and ordered in terms of relevance to the target application domain. With the help of an integrated assessment method, the calculation of a generalized estimate value was performed and the result is explained. Finally, the planned application of this tool in a running project is explained.
The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.
Comparison of sleep characteristics measurements: a case study with a population aged 65 and above
(2020)
Good sleep is crucial for a healthy life of every person. Unfortunately, its quality often decreases with aging. A common approach to measuring the sleep characteristics is based on interviews with the subjects or letting them fill in a daily questionnaire and afterward evaluating the obtained data. However, this method has time and personal costs for the interviewer and evaluator of responses. Therefore, it would be important to execute the collection and evaluation of sleep characteristics automatically. To do that, it is necessary to investigate the level of agreement between measurements performed in a traditional way using questionnaires and measurements obtained using electronic monitoring devices. The study presented in this manuscript performs this investigation, comparing such sleep characteristics as "time going to bed", "total time in bed", "total sleep time" and "sleep efficiency". A total number of 106 night records of elderly persons (aged 65+) were analyzed. The results achieved so far reveal the fact that the degree of agreement between the two measurement methods varies substantially for different characteristics, from 31 minutes of mean difference for "time going to bed" to 77 minutes for "total sleep time". For this reason, a direct exchange of objective and subjective measuring methods is currently not possible.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.
The goal of this paper pretends to show how a bed system with an embedded system with sensor is able to analyze a person’s movement, breathing and recognizing the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors.
Assistive environments are entering our homes faster than ever. However, there are still various barriers to be broken. One of the crucial points is a personalization of offered services and integration of assistive technologies in common objects and therefore in a regular daily routine. Recognition of sleep patterns for the preliminary sleep study is one of the Health services that could be performed in an undisturbing way. This article proposes the hardware system for the measurement of bio-vital signals necessary for initial sleep study in a nonobtrusive way. The first results confirm the potential of measurement of breathing and movement signals with the proposed system.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.