Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 4 of 8
Back to Result List

Leveraging textual information for improving decision making in the business process lifecycle

  • Business process implementations fail, because requirements are elicited incompletely. At the same time, a huge amount of unstructured data is not used for decision-making during the business process lifecycle. Data from questionnaires and interviews is collected but not exploited because the effort doing so is too high. Therefore, this paper shows how to leverage textual information for improving decision making in the business process lifecycle. To do so, text mining is used for analyzing questionnaires and interviews.

Download full text files

  • 577.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenZimmermann, Alfred
DOI:https://doi.org/10.1007/978-3-319-19857-6_48
ISBN:978-331-91985-7-6
Erschienen in:Intelligent Decision Technologies : Proceedings of the 7th KES International Conference on Intelligent Decision Technologies (KES-IDT 2015)
Publisher:Springer
Place of publication:Cham
Editor:Rui Neves-Silva
Document Type:Conference Proceeding
Language:English
Year of Publication:2015
Tag:BPM; context data; decision-making; process interviews; text mining
Page Number:12
First Page:563
Last Page:574
PPN:Im Katalog der Hochschule Reutlingen ansehen
DDC classes:006 Spezielle Computerverfahren
Open Access?:Nein
Licence (German):License Logo  Lizenzbedingungen Springer