Nein
Refine
Document Type
- Article (410)
- Conference Proceeding (404)
- Part of a Book (234)
- Book (113)
- Doctoral Thesis (21)
- Anthology (20)
- Patent (20)
- Part of Periodical (1)
- Review (1)
- Working Paper (1)
Institute
- ESB Business School (395)
- Informatik (294)
- Technik (277)
- Angewandte Chemie (137)
- Textil und Design (115)
In recent years, the development and application of decellularized extracellular matrices (ECMs) for use as biomaterials have grown rapidly. These cell-derived matrices (CDMs) represent highly bioactive and biocompatible materials consisting of a complex assembly of biomolecules. Even though CDMs mimic the natural microenvironment of cells in vivo very closely, they still lack specifically addressable functional groups, which are often required to tailor a biomaterial functionality by bioconjugation. To overcome this limitation, metabolic glycoengineering has emerged as a powerful tool to equip CDMs with chemical groups such as azides. These small chemical handles are known for their ability to undergo bioorthogonal click reactions, which represent a desirable reaction type for bioconjugation. However, ECM insolubility makes its processing very challenging. In this contribution, we isolated both the unmodified ECM and azide-modified clickECM by osmotic lysis. In a first step, these matrices were concentrated to remove excessive water from the decellularization step. Next, the hydrogel-like ECM and clickECM films were mechanically fragmentized, resulting in easy to pipette suspensions with fragment sizes ranging from 7.62 to 31.29 μm (as indicated by the mean d90 and d10 values). The biomolecular composition was not impaired as proven by immunohistochemistry. The suspensions were used for the reproducible generation of surface coatings, which proved to be homogeneous in terms of ECM fragment sizes and coating thicknesses (the mean coating thickness was found to be 33.2 ± 7.3 μm). Furthermore, they were stable against fluid-mechanical abrasion in a laminar flow cell. When primary human fibroblasts were cultured on the coated substrates, an increased bioactivity was observed. By conjugating the azides within the clickECM coatings with alkyne-coupled biotin molecules, a bioconjugation platform was obtained, where the biotin–streptavidin interaction could be used. Its applicability was demonstrated by equipping the bioactive clickECM coatings with horseradish peroxidase as a model enzyme.
Im Gegensatz etwa zur klassischen Werbung handelt es sich beim Event-Marketing um ein dynamisches Kommunikationsinstrument, das laufend Trends und Neuerungen mit sich bringt. Die vielfältigen Einsatzmöglichkeiten und Potenziale des Event-Marketing ermöglichen es, entsprechend dem momentanen Zeitgeist relevante Zielgruppen zu erreichen, markenrelevante Wirklichkeiten und Erlebniswelten zu generieren, Emotionen und Sympathiewerte zu erzeugen und auf diese Weise eine Bindung zwischen Marke bzw. Unternehmen und Rezipienten herzustellen.
This article studies the current debate on Coronabonds and the idea of European public debt in the aftermath of the Corona pandemic. According to the EU-Treaty economic and fiscal policy remains in the sovereignty of Member States. Therefore, joint European debt instruments are risky and trigger moral hazard and free-riding in the Eurozone. We exhibit that a mixture of the principle of liability and control impairs the present fiscal architecture and destabilizes the Eurozone. We recommend that Member States ought to utilize either the existing fiscal architecture available or establish a political union with full sovereignty in Europe. This policy conclusion is supported by the PSPP-judgement of the Federal Constitutional Court of Germany on 5 May 2020. This ruling initiated a lively debate about the future of the Eurozone and Europe in general.
Purpose
Despite growing interest in the intersection of supply chain management (SCM) and management accounting (MA) in the academic debate, there is a lack of understanding regarding both the content and the delimitation of this topic. As of today, no common conceptualization of supply chain management accounting (SCMA) exists. The purpose of this study is to provide an overview of the research foci of SCMA in the scholarly debate of the past two decades. Additionally, it analyzes whether and to what extent the academic discourse of MA in SCs has already found its way into both SCM and MA higher education, respectively.
Design/methodology/approach
A content analysis is conducted including 114 higher education textbooks written in English or in German language.
Findings
The study finds that SC-specific concepts of MA are seldom covered in current textbooks of both disciplines. The authors conclude that although there is an extensive body of scholarly research about SCMA concepts, there is a significant discrepancy with what is taught in higher education textbooks.
Practical implications
There is a large discrepancy between the extensive knowledge available in scholarly research and what we teach in both disciplines. This implies that graduates of both disciplines lack important knowledge and skills in controlling and accounting for SCs. To bring about the necessary change, MA and SCM in higher education must be more integrative.
Originality/value
To the best of the authors knowledge, this study is first of its kind comprising a large textbook sample in both English and German languages. It is the first substantiated assessment of the current state of integration between SCM and MA in higher education.
In this work, a brushless, harmonic-excited wound-rotor synchronous machine is investigated which utilizes special stator and rotor windings. The windings magnetically decouple the fundamental torque-producing field from the harmonic field required for the inductive power transfer to the field coil. In contrast to conventional harmonic-excited synchronous machines, the whole winding is utilized for both torque production and harmonic excitation such that no additional copper for auxiliary windings is needed. Different rotor topologies using rotating power electronic components are investigated and their efficiencies have been compared based on Finite-Element calculation and circuit analysis.
Energy efficient electric control of drives is more and more important for electric mobility and manufacturing industries. Online dynamic optimization of induction machines is challenging due to the computational complexity involved and the variable power losses during dynamic operation of induction machines. This paper proposes a simple technique for sub-optimal online loss optimization using rotor flux linkage templates for energy efficient dynamic operation of induction machines. Such a rotor flux linkage template is given by a rotor flux linkage trajectory which is optimal for a specific scenario. This template is calculated in an offline optimization process. For a specific scenario during real time operation the rotor flux linkage is calculated by appropriately scaling the given template.
Steady state efficiency optimization techniques for induction motors are state of the art and various methods have already been developed. This paper provides new insights in the efficiency optimized operation in dynamic regime. The paper proposes an anticipative flux modification in order to decrease losses during torque and speed transients. These trajectories are analyzed based on a numerical study for different motors. Measurement results for one motor are given as well.
The aim of this work was to investigate the mean fill weight control of a continuous capsule-filling process, whether it is possible to derive controller settings from an appendant process model. To that end, a system composed out of fully automated capsule filler and an online gravimetric scale was used to control the filled weight. This setup allows to examine challenges associated with continuous manufacturing processes, such as variations in the amount of active pharmaceutical ingredient (API) in the mixture due to fluctuations of the feeders or due to altered excipient batch qualities. Two types of controllers were investigated: a feedback control and a combination of feedback and feedforward control. Although both of those are common in the industry, determining the optimal parameter settings remains an issue. In this study, we developed a method to derive the control parameters based on process models in order to obtain optimal control for each filled product. Determined via rapid automated process development (RAPD), this method is an effective and fast way of determining control parameters. The method allowed us to optimize the weight control for three pharmaceutical excipients. By conducting experiments, we verified the feasibility of the proposed method and studied the dynamics of the controlled system. Our work provides important basic data on how capsule filler can be implemented into continuous manufacturing systems.
Most antimicrobial peptides (AMPs) and their synthetic mimics (SMAMPs) are thought to act by permeabilizing cell membranes. For antimicrobial therapy, selectivity for pathogens over mammalian cells is a key requirement. Understanding membrane selectivity is thus essential for designing AMPs and SMAMPs to complement classical antibiotics in the future. This study focuses on membrane permeabilization induced by SMAMPs and their selectivity for membranes with different lipid compositions. We measure release and fluorescence lifetime of a self-quenching dye in lipid vesicles. Apart from the dose-response, we quantify the strength of individual leakage events, and, employing cumulative kinetics, categorize permeabilization behavior. We propose that differing selectivities in a series of SMAMPs arise from a combination of the effect of the antimicrobial agent and the susceptibility of the membrane (with a given lipid composition) for certain types of leakage behavior. The unselective and hemolytic SMAMP is found to act mainly by the asymmetry stress mechanism, mediated by hydrophobic insertion of SMAMPs into lipid layers. The more selective SMAMPs induced leakage events occurring stochastically over several hours. Lipid intrinsic properties might additionally amplify the efficiency of leakage events. Leakage behavior changes with both the design of the SMAMP and the lipid composition of the membrane. Understanding how leakage behavior contributes to the selectivity and activity of antimicrobial agents will aid the design and screening of antimicrobials. An understanding of the underlying processes facilitates the comparison of membrane permeabilization across in vitro and in vivo assays.