Refine
Document Type
- Conference proceeding (15)
- Journal article (4)
Language
- English (19)
Is part of the Bibliography
- yes (19)
Institute
- Informatik (19)
Publisher
- Springer (9)
- Elsevier (4)
- IEEE (3)
- HTWG Konstanz (2)
- Hochschule Reutlingen (1)
Healthy sleep is required for sufficient restoration of the human body and brain. Therefore, in the case of sleep disorders, appropriate therapy should be applied timely, which requires a prompt diagnosis. Traditionally, a sleep diary is a part of diagnosis and therapy monitoring for some sleep disorders, such as cognitive behaviour therapy for insomnia. To automatise sleep monitoring and make it more comfortable for users, substituting a sleep diary with a smartwatch measurement could be considered. With the aim of providing accurate results, a study with a total of 30 night recordings was conducted. Objective sleep measurement with a Samsung Galaxy Watch 4 was compared with a subjective approach (sleep diary), evaluating the four relevant sleep characteristics: time of getting asleep, wake up time, sleep efficiency (SE), and total sleep time (TST). The performed analysis has demonstrated that the median difference between both measurement approaches was equal to 7 and 3 minutes for a time of getting asleep and wake up time correspondingly, which allows substituting a subjective measurement with a smartwatch. The SE was determined with a median difference between the two measurement methods of 5.22%. This result also implicates a possibility of substitution. Some single recordings have indicated a higher variance between the two approaches. Therefore, the conclusion can be made that a substitution provides reliable results primarily in the case of long-term monitoring. The results of the evaluation of the TST measurement do not allow to recommend substitution of the measurement method.
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.
The respiratory rate is a vital sign indicating breathing illness. It is necessary to analyze the mechanical oscillations of the patient's body arising from chest movements. An inappropriate holder on which the sensor is mounted, or an inappropriate sensor position is some of the external factors which should be minimized during signal registration. This paper considers using a non-invasive device placed under the bed mattress and evaluates the respiratory rate. The aim of the work is the development of an accelerometer sensor holder for this system. The normal and deep breathing signals were analyzed, corresponding to the relaxed state and when taking deep breaths. The evaluation criterion for the holder's model is its influence on the patient's respiratory signal amplitude for each state. As a result, we offer a non-invasive system of respiratory rate detection, including the mechanical component providing the most accurate values of mentioned respiratory rate.
In many cases continuous monitoring of vital signals is required and low intrusiveness is an important requirement. Incorporating monitoring systems in the hospital or home bed could have benefits for patients and caregivers. The objective of this work is the definition of a measurement protocol and the creation of a data set of measurements using commercial and low-cost prototypes devices to estimate heart rate and breathing rate. The experimental data will be used to compare results achieved by the devices and to develop algorithms for feature extraction of vital signals.
Personalized remote healthcare monitoring is in continuous development due to the technology improvements of sensors and wearable electronic systems. A state of the art of research works on wearable sensors for healthcare applications is presented in this work. Furthermore, a state of the art of wearable devices, chest and wrist band and smartwatches available on the market for health and sport monitoring is presented in this paper. Many activity trackers are commercially available. The prices are continuously reducing and the performances are improving, but commercial devices do not provide raw data and are therefore not useful for research purposes.
The present work proposes the use of modern ICT technologies such as smartphones, NFCs, internet, and web technologies, to help patients in carrying out their therapies. The implemented system provides a calendar with a reminder of the assumptions, ensures the drug identification through NFC, allows remote assistance from healthcare staff and family members to check and manage the therapy in real-time. The system also provides centralized information on the patient's therapeutic situation, helpful in choosing new compatible therapies.
In recent decades, it can be observed that a steady increase in the volume of tourism is a stable trend. To offer travel opportunities to all groups, it is also necessary to prepare offers for people in need of long-term care or people with disabilities. One of the ways to improve accessibility could be digital technologies, which could help in planning as well as in carrying out trips. In the work presented, a study of barriers was first conducted, which led to selecting technologies for a test setup after analysis. The main focus was on a mobile app with travel information and 360° tours. The evaluation results showed that both technologies could increase accessibility, but some essential aspects (such as usability, completeness, relevance, etc.) need to be considered when implementing them.
The goal of this paper pretends to show how a bed system with an embedded system with sensor is able to analyze a person’s movement, breathing and recognizing the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors.