Refine
Document Type
- Conference proceeding (68)
- Journal article (44)
- Book chapter (12)
Is part of the Bibliography
- yes (124)
Institute
- Informatik (123)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (28)
- IEEE (13)
- Università Politecnica delle Marche (13)
- Hochschule Reutlingen (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
The impact of stress of every human being has become a serious problem. Reported impact on persons are a higher rate or health disorders like heart problems, obesity, asthma, diabetes, depressions and many others. An individual in a stressful situation has to deal with altered cognition as well as an affected decision making skill and problem solving. This could lead to a higher risk for accidents in dynamic environments such as automotive. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives or computes the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence as well as recommend driving behavior to decrease stress influenced driving as well as improve road safety.
Telemedicine is becoming an increasingly important approach to diagnostic, treat or prevent diseases. However, the usage of Information Communication Technologies in healthcare results in a considerable amount of data that must be efficiently and securely transmitted. Many manufacturers provide telemedicine platforms without regarding interoperability, mobility and collaboration. This paper describes a collaborative mobile telemonitoring platform that can use the IEEE 11073 and HL7 communication standards or adapt proprietary protocols. The proposed platform also covers the security and modularity aspects. Furthermore this work introduces an Android-based prototype implementation
This paper presents a new European initiative to support the sustainable empowerment of the ageing society. Empowerment in this context represents the capability to have a self-determined, autonomous and healthy life. The paper justifies the need of such an initiative and highlights the role that telemedicine and ambient assisted living can play in this environment.
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (longterm electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic TimeWarping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.
Energy-efficiency and safety became an important factor for car manufacturers. Thus, the cars have been optimised regarding the energy consumption and safety by optimising for example the power train or the engine. Besides the optimisation of the car itself, energy-efficiency and safety can also be increased by adapting the individual driving behaviour to the current driving situation. This paper introduces a driving system, which is in development. Its goal is to optimise the driving behaviour in terms of energy-efficiency and safety by giving recommendations to the driver. For the creation of a recommendation the driving system monitors the driver and the current driving situation as well as the car using in-vehicle sensors and serial-bus systems. On the basis of the acquired data, the driving system will give individual energy-efficiency and safety recommendations in real-time. This will allow eliminating bad driving habits, while considering the driver needs.
Stress is becoming an important topic in modern life. The influence of stress results in a higher rate of health disorders such as burnout, heart problems, obesity, asthma, diabetes, depressions and many others. Furthermore individual’s behavior and capabilities could be directly affected leading to altered cognition, inappropriate decision making and problem solving skills. In a dynamic and unpredictable environment, such as automotive, this can result in a higher risk for accidents. Different papers faced the estimation as well as prediction of drivers’ stress level during driving. Another important question is not only the stress level of the driver himself, but also the influence on and of a group of other drivers in the near area. This paper proposes a system, which determines a group of drivers in a near area as clusters and it derives the individual stress level. This information will be analyzed to generate a stress map, which represents a graphical view about road section with a higher stress influence. Aggregated data can be used to generate navigation routes with a lower stress influence to decrease stress influenced driving as well as improve road safety.
Stress is recognized as a predominant disease with raising costs for rehabilitation and treatment. Currently there are several different approaches that can be used for determining and calculating the stress levels. Usually the methods for determining stress are divided in two categories. The first category do not require any special equipment for measuring the stress. This category useless the variation in the behaviour patterns that occur while stress. The core disadvantage for the category is their limitation to specific use case. The second category uses laboratories instruments and biological sensors. This category allow to measure stress precisely and proficiently but on the same time they are not mobile and transportable and do not support real-time feedback. This work presents a mobile system that provides the calculation of stress. For achieving this, the of a mobile ECG sensor is analysed, processed and visualised over a mobile system like a smartphone. This work also explains the used stress measurement algorithm. The result of this work is a portable system that can be used with a mobile system like a smartphone as visual interface for reporting the current stress level.
A lot of people need help in their daily life to wash, select and manage their clothing. The goal of this work is to design an assistant system (eKlarA) to support the user by giving recommendations to choose the clothing combinations, to find the clothing and to wash the clothing. The idea behind eKlarA is to generate a system that uses sensors to identify the clothing and their state in the clothing cycle. The clothing cycle consists of the stations: closets, laundry basket and washing machine in one or several places. The system uses the information about the clothing, weather and calendar to support the user in the different steps of the clothing cycle. The first prototype of this system has been developed and tested. The test results are presented in this work.
Besides the optimisation of the car, energy-efficiency and safety can also be increased by optimising the driving behaviour. Based on this fact, a driving system is in development whose goal is to educate the driver in energy efficient and safe driving. It monitors the driver, the car and the environment and gives energy-efficiency and safety relevant recommendations. However, the driving system tries not to distract or bother the driver by giving recommendations for example during stressful driving situations or when the driver is not interested in that recommendation. Therefore, the driving system monitors the stress level of the driver as well as the reaction of the driver to a given recommendation and decideswhether to give a recommendation or not. This allows to suppress recommendations when needed and, thus, to increase the road safety and the user acceptance of
the driving system.
Being able to monitor the heart activity of patients during their daily life in a reliable, comfortable and affordable way is one main goal of the personalized medicine. Current wearable solutions lack either on the wearing comfort, the quality and type of the data provided or the price of the device. This paper shows the development of a Textile Sensor Platform (TSP) in the form of an electrocardiogram (ECG)-measuring T-shirt that is able to transmit the ECG signal to a smartphone. The development process includes the selection of the materials, the design of the textile electrodes taking into consideration their electrical characteristics and ergonomy, the integration of the electrodes on the garment and their connection with the embedded electronic part. The TSP is able to transmit a real-time streaming of the ECG-signal to an Android smartphone through Bluetooth Low Energy (BLE). Initial results show a good electrical quality in the textile electrodes and promising results in the capture and transmission of the ECG signal. This is still a working- progress and it is the result of an interdisciplinary master project between the School of Informatics and the School of Textiles & Design of the Reutlingen University.