Refine
Document Type
- Conference proceeding (63)
- Journal article (43)
- Book chapter (12)
Is part of the Bibliography
- yes (118)
Institute
- Informatik (117)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (23)
- Università Politecnica delle Marche (13)
- IEEE (12)
- Hochschule Reutlingen (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
Thematic issue on human-centred ambient intelligence: cognitive approaches, reasoning and learning
(2017)
This editorial presents advances on human-centred Ambient Intelligence applications which take into account cognitive issues when modelling users (i.e. stress, attention disorders), and learn users’ activities/preferences and adapt to them (i.e. at home, driving a car). These papers also show AmI applications in health and education, which make them even more valuable for the general society.
To evaluate the quality of sleep, it is important to determine how much time was spent in each sleep stage during the night. The gold standard in this domain is an overnight polysomnography (PSG). But the recording of the necessary electrophysiological signals is extensive and complex and the environment of the sleep laboratory, which is unfamiliar to the patient, might lead to distorted results. In this paper, a sleep stage detection algorithm is proposed that uses only the heart rate signal, derived from electrocardiogram (ECG), as a discriminator. This would make it possible for sleep analysis to be performed at home, saving a lot of effort and money. From the heart rate, using the fast Fourier transformation (FFT), three parameters were calculated in order to distinguish between the different sleep stages. ECG data along with a hypnogram scored by professionals was used from Physionet database, making it easy to compare the results. With an agreement rate of 41.3%, this approach is a good foundation for future research.
To assess the quality of a person’s sleep, it is essential to examine the sleep behaviour by identifying the several sleep stages, their durations and sleep cycles. The established and gold standard procedure for sleep stage scoring is overnight polysomnography (PSG) with the Rechtschaffen and Kales (R-K) method. Unfortunately, the conduct of PSG is time-consuming and unfamiliar for the subjects and might have an impact of the recorded data. To avoid the disadvantages with PSG, it is important to make further investigations in low-cost home diagnostic systems. For this intention it is necessary to find suitable bio vital parameters for classifying sleep stages without any physical impairments at the same time. Due to the promising results in several publications we want to analyse existing methods for sleep stage classification based on the parameters body movement,
heartbeat and respiration. Our aim was to find different behaviour patterns in the several sleep stages. Therefore, the average values of 15 whole-night PSG recordings -obtained from the ‘DREAMS
Subjects Database’- where analysed in the light of heartbeat, body movement and respiration with 10 different methods.
To analyze the humans’ sleep it is necessary as to identify the sleep stages, occurring during the sleep, their durations and sleep cycles. The gold standard procedure for this approach is polysomnography (PSG), which classify the sleep stages based on Rechtschaffen and Kales (R-K) method. This method aside the advantages as high accuracy has however some disadvantages, among others time-consuming and uncomfortable for the patient procedure. Therefore, the development of further methods for the sleep classification in addition to PSG is a promising topic for the investigation and this work has as its aim the presentation of possible ways and goals for this development.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.
Medical applications are becoming increasingly important in the current development of health care and therefore a crucial part of the medical industry. An essential component is the development of user interfaces for mobile medical applications. The conceptual process is crucial for the further development of the main development process. Inconsistency or errors in the conceptual phase, have a serious impact on all areas and could prevent the certification for market approval.
This paper presents a guide to support developer with this process. It was developed based on a requirement analysis of the legal requirements to publish a medical device.
How to protect the skin from getting sun burnt? The sun can damage your skin e.g. skin cancer. But the sun has a positive effect to the human. The time in sun and the intensity are key values between enjoy the sunbath and having a negative effect to the skin. A smart device like a UV flower could help you to enjoy the sunbath. It measures the UV index around you and gives this information to a smartphone app. The development steps of such a device are described in this paper. The UV flower is made of textile fabrics.
Saving energy and road safety became important in the last decades, hence several driving assistant systems were developed that help to improve the driving behaviour. However, these driving systems cover the area of either energy-efficiency or safety. Furthermore, they do not consider the reaction of the driver to a shown recommendation and the driver stress level. In this paper, the decision process of showing a recommendation to the driver in an energy-efficient and safety relevant driving system is presented. The decision process considers the driver's reaction to a shown recommendation and the driver stress in order to increase the user acceptance and the road safety. The results of the evaluation showed that the driving system was able to show recommendations when needed, while suppressing recommendations when the driver ignored a recommendation repeatedly or when the driver was in stress.
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.