Refine
Document Type
- Conference proceeding (26)
- Journal article (17)
- Book chapter (4)
Is part of the Bibliography
- yes (47)
Institute
- Informatik (47)
Publisher
- Springer (15)
- Elsevier (11)
- IEEE (6)
- Università Politecnica delle Marche (5)
- Hochschule Reutlingen (3)
- MDPI (3)
- HTWG Konstanz (2)
- Cuvillier Verlag (1)
- Pabst Science Publishers (1)
To analyze the humans’ sleep it is necessary as to identify the sleep stages, occurring during the sleep, their durations and sleep cycles. The gold standard procedure for this approach is polysomnography (PSG), which classify the sleep stages based on Rechtschaffen and Kales (R-K) method. This method aside the advantages as high accuracy has however some disadvantages, among others time-consuming and uncomfortable for the patient procedure. Therefore, the development of further methods for the sleep classification in addition to PSG is a promising topic for the investigation and this work has as its aim the presentation of possible ways and goals for this development.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.
Health monitoring in a home environment can have broader use since it may provide continuous control of health parameters with relatively minor intrusiveness into regular life. This work aims to verify if it is possible to replace the typical in some sleep medicine areas subjective questioning by an objective measurement using electronic devices. For this purpose, a study was conducted with ten subjects, in which objective and subjective measurement of relevant sleep parameters took place. The results of both measurement methods were evaluated and analyzed. The results showed that while for some measures, such as Total Time in Bed, there is a high agreement between objective and subjective measurements, for others, such as sleep quality, there are significant differences. For this reason, currently, a combination of both measurement methods may be beneficial and provide the most detailed results, while a partial replacement can already reduce the number of questions at the subjective measurement by measurement through electronic devices.
The present work proposes the use of modern ICT technologies such as smartphones, NFCs, internet, and web technologies, to help patients in carrying out their therapies. The implemented system provides a calendar with a reminder of the assumptions, ensures the drug identification through NFC, allows remote assistance from healthcare staff and family members to check and manage the therapy in real-time. The system also provides centralized information on the patient's therapeutic situation, helpful in choosing new compatible therapies.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Sustainable technologies are being increasingly used in various areas of human life. While they have a multitude of benefits, they are especially useful in health monitoring, especially for certain groups of people, such as the elderly. However, there are still several issues that need to be addressed before its use becomes widespread. This work aims to clarify the aspects that are of great importance for increasing the acceptance of the use of this type of technology in the elderly. In addition, we aim to clarify whether the technologies that are already available are able to ensure acceptable accuracy and whether they could replace some of the manual approaches that are currently being used. A two-week study with people 65 years of age and over was conducted to address the questions posed here, and the results were evaluated. It was demonstrated that simplicity of use and automatic functioning play a crucial role. It was also concluded that technology cannot yet completely replace traditional methods such as questionnaires in some areas. Although the technologies that were tested were classified as being “easy to use”, the elderly population in the current study indicated that they were not sure that they would use these technologies regularly in the long term because the added value is not always clear, among other issues. Therefore, awareness-raising must take place in parallel with the development of technologies and services.
Die Erholung unseres Körpers und Gehirns von Müdigkeit ist direkt abhängig von der Qualität des Schlafes, die aus den Ergebnissen einer Schlafstudie ermittelt werden kann. Die Klassifizierung der Schlafstadien ist der erste Schritt dieser Studie und beinhaltet die Messung von Biovitaldaten und deren weitere Verarbeitung. Das non-invasive Schlafanalyse-System basiert auf einem Hardware-Sensornetz aus 24 Drucksensoren, das die Schlafphasenerkennung ermöglicht. Die Drucksensoren sind mit einem energieeffizienten Mikrocontroller über einen systemweiten Bus mit Adressarbitrierung verbunden. Ein wesentlicher Unterschied dieses Systems im Vergleich zu anderen Ansätzen ist die innovative Art, die Sensoren unter der Matratze zu platzieren. Diese Eigenschaft erleichtert die kontinuierliche Nutzung des Systems ohne fühlbaren Einfluss auf das gewohnte Bett. Das System wurde getestet, indem Experimente durchgeführt wurden, die den Schlaf verschiedener gesunder junger Personen aufzeichneten. Die ersten Ergebnisse weisen auf das Potenzial hin, nicht nur Atemfrequenz und Körperbewegung, sondern auch Herzfrequenz zu erfassen.