Informatik
Refine
Document Type
- Conference proceeding (67)
- Journal article (44)
- Book chapter (12)
Is part of the Bibliography
- yes (123)
Institute
- Informatik (123)
- Technik (1)
Publisher
- Springer (34)
- Elsevier (28)
- IEEE (13)
- Università Politecnica delle Marche (13)
- Hochschule Reutlingen (11)
- MDPI (8)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- American Institute of Physics (1)
- Association for Computing Machinery (1)
Sleep analysis using a Polysomnography system is difficult and expensive. That is why we suggest a non-invasive and unobtrusive measurement. Very few people want the cables or devices attached to their bodies during sleep. The proposed approach is to implement a monitoring system, so the subject is not bothered. As a result, the idea is a non-invasive monitoring system based on detecting pressure distribution. This system should be able to measure the pressure differences that occur during a single heartbeat and during breathing through the mattress. The system consists of two blocks signal acquisition and signal processing. This whole technology should be economical to be affordable enough for every user. As a result, preprocessed data is obtained for further detailed analysis using different filters for heartbeat and respiration detection. In the initial stage of filtration, Butterworth filters are used.
Determination of accelerometer sensor position for respiration rate detection: initial research
(2022)
Continuous monitoring of a patient's vital signs is essential in many chronic illnesses. The respiratory rate (RR) is one of the vital signs indicating breathing diseases. This article proposes the initial investigation for determining the accelerometric sensor position of a non-invasive and unobtrusive respiratory rate monitoring system. This research aims to determine the sensor position in relation to the patient, which can provide the most accurate values of the mentioned physiological parameter. In order to achieve the result, the particular system setup, including a mechanical sensor holder construction was used. The breathing signals from 5 participants were analyzed corresponding to the relaxed state. The main criterion for selecting a suitable sensor position was each patient's average acceleration amplitude excursion, which corresponds to the respiratory signal. As a result, we provided one more defined important parameter for the considered system, which was not determined before.
Today many scientific works are using deep learning algorithms and time series, which can detect physiological events of interest. In sleep medicine, this is particularly relevant in detecting sleep apnea, specifically in detecting obstructive sleep apnea events. Deep learning algorithms with different architectures are used to achieve decent results in accuracy, sensitivity, etc. Although there are models that can reliably determine apnea and hypopnea events, another essential aspect to consider is the explainability of these models, i.e., why a model makes a particular decision. Another critical factor is how these deep learning models determine how severe obstructive sleep apnea is in patients based on the apnea-hypopnea index (AHI). Deep learning models trained by two approaches for AHI determination are exposed in this work. Approaches vary depending on the data format the models are fed: full-time series and window-based time series.
Sleep is essential to existence, much like air, water, and food, as we spend nearly one-third of our time sleeping. Poor sleep quality or disturbed sleep causes daytime solemnity, which worsens daytime activities' mental and physical qualities and raises the risk of accidents. With advancements in sensor and communication technology, sleep monitoring is moving out of specialized clinics and into our everyday homes. It is possible to extract data from traditional overnight polysomnographic recordings using more basic tools and straightforward techniques. Ballistocardiogram is an unobtrusive, non-invasive, simple, and low-cost technique for measuring cardiorespiratory parameters. In this work, we present a sensor board interface to facilitate the communication between force sensitive resistor sensor and an embedded system to provide a high-performing prototype with an efficient signal-to-noise ratio. We have utilized a multi-physical-layer approach to locate each layer on top of another, yet supporting a low-cost, compact design with easy deployment under the bed frame.
The importance of sleep for human life is enormous. It affects physical, mental, and psychological health. Therefore, it is vital to recognise sleep disorders in a timely manner in order to be able to initiate therapy. There are two methods for measuring sleep-related parameters - objective and subjective. Whether the substitution of a subjective method for an objective one is possible is investigated in this paper. Such replacement may bring several advantages, including increased comfort for the user. To answer this research question, a study was conducted in which 75 overnight recordings were evaluated. The primary purpose of this study was to compare both ways of measurement for total sleep time and sleep efficiency, which are essential parameters for, e.g., insomnia diagnosis and treatment. The evaluation results demonstrated that, on average, there are 32 minutes of difference between the two measurement methods when total sleep time is analysed. In contrast, on average, both measurement methods differ by 7.5% for sleep efficiency measurement. It should also be noted that people typically overestimate total sleep time and efficiency with the subjective method, where the perceived values are measured.
The citizen-centered health platform project is intended to provide a platform that can be used in EU cross-border regions, where social and economic exchange occurs across national borders. The overriding challenges are: (a) social: improving citizen-centered health and care provision; (b) technical: providing a digital platform for networking citizens, service providers, and municipal actors; (c) economic: developing long-term successful (sustainable) business models/value chains. The platform should strengthen and expand existing networks and establish new regional networks. Each network addresses particular challenges and apply them in a region-specific manner. Here, the national boundary conditions and the interregional needs play an essential role. These objectives require sufficient participation of civil society representatives. Furthermore, the platform will establish an overarching, sustainable, and knowledge-based network of health experts. The platform is to be jointly developed and implemented in the regions and follow an open-access approach. Therefore, synergies will be shared more quickly, strengthening competencies and competitiveness. In addition to practice partners, scientific and municipal institutions and SMEs are involved. The actors thus contribute to scientific performance, innovative strength, and resilience.
Personalized remote healthcare monitoring is in continuous development due to the technology improvements of sensors and wearable electronic systems. A state of the art of research works on wearable sensors for healthcare applications is presented in this work. Furthermore, a state of the art of wearable devices, chest and wrist band and smartwatches available on the market for health and sport monitoring is presented in this paper. Many activity trackers are commercially available. The prices are continuously reducing and the performances are improving, but commercial devices do not provide raw data and are therefore not useful for research purposes.
Gamification is one of the recognized methods of motivating people in various life processes, and it has spread to many spheres of life, including healthcare. This article proposes a system design for long-term care patients using the method mentioned. The proposed system aims to increase patient engagement in the treatment and rehabilitation process via gamification. Literature research on available and earlier proposed systems was conducted to develop a suited system design. The primary target group includes bedridden patients and a sedentary lifestyle (predominantly lying in bed). One of the main criteria for selecting a suitable option was its contactless realization for the mentioned target groups in long-term care cases. As a result, we developed the system design for hardware and software that could prevent bedsores and other health problems from occurring because of low activity. The proposed design can be tested in hospitals, nursing homes, and rehabilitation centers.
In recent decades, it can be observed that a steady increase in the volume of tourism is a stable trend. To offer travel opportunities to all groups, it is also necessary to prepare offers for people in need of long-term care or people with disabilities. One of the ways to improve accessibility could be digital technologies, which could help in planning as well as in carrying out trips. In the work presented, a study of barriers was first conducted, which led to selecting technologies for a test setup after analysis. The main focus was on a mobile app with travel information and 360° tours. The evaluation results showed that both technologies could increase accessibility, but some essential aspects (such as usability, completeness, relevance, etc.) need to be considered when implementing them.
The digital twin concept has been widely known for asset monitoring in the industry for a long time. A clear example is the automotive industry. Recently, there has also been significant interest in the application of digital twins in healthcare, especially in genomics in what is known as precision medicine. This work focuses on another medical speciality where digital twins can be applied, sleep medicine. However, there is still great controversy about the fundamentals that constitute digital twins, such as what this concept is based on and how it can be included in healthcare effectively and sustainably. This article reviews digital twins and their role so far in what is known as personalized medicine. In addition, a series of steps will be exposed for a possible implementation of a digital twin for a patient suffering from sleep disorders. For this, artificial intelligence techniques, clinical data management, and possible solutions for explaining the results derived from artificial intelligence models will be addressed.