Informatik
Refine
Document Type
- Conference proceeding (59)
- Journal article (27)
- Book chapter (5)
Is part of the Bibliography
- yes (91)
Institute
- Informatik (91)
- Technik (1)
Publisher
- Springer (29)
- Elsevier (17)
- Hochschule Reutlingen (11)
- IEEE (9)
- Università Politecnica delle Marche (7)
- MDPI (3)
- HTWG Konstanz (2)
- Smart Home & Living Baden-Württemberg e.V. (2)
- ACM (1)
- AIP Publishing (1)
Comparison of sleep characteristics measurements: a case study with a population aged 65 and above
(2020)
Good sleep is crucial for a healthy life of every person. Unfortunately, its quality often decreases with aging. A common approach to measuring the sleep characteristics is based on interviews with the subjects or letting them fill in a daily questionnaire and afterward evaluating the obtained data. However, this method has time and personal costs for the interviewer and evaluator of responses. Therefore, it would be important to execute the collection and evaluation of sleep characteristics automatically. To do that, it is necessary to investigate the level of agreement between measurements performed in a traditional way using questionnaires and measurements obtained using electronic monitoring devices. The study presented in this manuscript performs this investigation, comparing such sleep characteristics as "time going to bed", "total time in bed", "total sleep time" and "sleep efficiency". A total number of 106 night records of elderly persons (aged 65+) were analyzed. The results achieved so far reveal the fact that the degree of agreement between the two measurement methods varies substantially for different characteristics, from 31 minutes of mean difference for "time going to bed" to 77 minutes for "total sleep time". For this reason, a direct exchange of objective and subjective measuring methods is currently not possible.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.
The evaluation of the effectiveness of different machine learning algorithms on a publicly available database of signals derived from wearable devices is presented with the goal of optimizing human activity recognition and classification. Among the wide number of body signals we choose a couple of signals, namely photoplethysmographic (optically detected subcutaneous blood volume) and tri-axis acceleration signals that are easy to be simultaneously acquired using commercial widespread devices (e.g. smartwatches) as well as custom wearable wireless devices designed for sport, healthcare, or clinical purposes. To this end, two widely used algorithms (decision tree and k-nearest neighbor) were tested, and their performance were compared to two new recent algorithms (particle Bernstein and a Monte Carlo-based regression) both in terms of accuracy and processing time. A data preprocessing phase was also considered to improve the performance of the machine learning procedures, in order to reduce the problem size and a detailed analysis of the compression strategy and results is also presented.
Autism spectrum disorders (ASD) affect a large number of children both in the Russian Federation and in Germany. Early diagnosis is key for these children, because the sooner parents notice such disorders in a child and the rehabilitation and treatment program starts, the higher the likelihood of his social adaptation. The difficulties in raising such a child lie in the complexity of his learning outside of children's groups and the complexity of his medical care. In this regard, the development of digital applications that facilitate medical care and education of such children at home is important and relevant. The purpose of the project is to improve the availability and quality of healthcare and social adaptation at home of children with ASD through the use of digital technologies.
The goal of the presented project is to develop the concept of home e-health centers for barrier-free and cross-border telemedicine. AAL technologies are already present on the market but there is still a gap to close until they can be used for ordinary patient needs. The general idea needs to be accompanied by new services, which should be brought together in order to provide a full coverage of service for the users. Sleep and stress were chosen as predominant influence in the population. The executed scientific study of available home devices analyzing sleep has provided the necessary to select appropriate devices. The first choice for the project implementation is the device EMFIT QS+. This equipment provides a part of a complete system that a home telemedical hospital can provide at a level of precision and communication with internal and/or external health services.
Artefaktkorrektur und verfeinerte Metriken für ein EEG-basiertes System zur Müdigkeitserkennung
(2019)
Fragestellung: Müdigkeit ist ein oft unterschätztes, aber dennoch großes Problem im Straßenverkehr. Von rund 2,5 Mio. Verkehrsunfällen 2015 in Deutschland, waren 2898 Unfälle, mit insgesamt 59 Toten (~1,7 % der Todesfälle), auf Übermüdung zurückzuführen. Schätzungen gehen von einer Dunkelziffer von bis zu 20 % aus. In einer ersten eigenen Studie wurde überprüft, ob ein mobiles EEG in einem Fahrsimulator Müdigkeitszustände zuverlässig erkennen kann. Die Erkennungsrate lag lediglich bei 61 %. Ziel dieser Arbeit ist, das verwendete Messsystem zu verbessern. Dazu wird die Genauigkeit durch eine Artefaktkorrektur und mit Hilfe von verfeinerten Qualitätsmetriken erhöht. Eine erkannte Übermüdung wird dem Fahrer dann in angemessener Weise angezeigt, so dass er entsprechend reagieren kann.
Patienten und Methoden: Die Independent Component Analysis (ICA) ist ein multivariates Verfahren, um mehrere Zufallsvariablen zu analysieren. Für die Entscheidung, ob ein Fahrer gerade müde oder wach ist, wird der erstellte Merkmalsvektor für jede Sequenz mit ICA klassifiziert. Dafür wird ein trainierter Machine-Learning-Algorithmus eingesetzt, der in der Lage ist, auch unbekannte Datensätze in Klassen einzuteilen. Um die benötigten Frequenzwerte zu erhalten, wurde für jeden EEG-Kanal eine Fourier Transformation durchgeführt. Der erstellte Merkmalsvektor wird im nächsten Schritt durch ein Künstliches Neuronales Netz klassifiziert. Für das Training werden vorab erstellte Merkmalsvektoren mit den Klassen „Wach“ und „Müde“ versehen. Diese Daten werden zufällig gemischt und im Verhältnis 2:1 in eine Trainings- und Testmenge geteilt. Das Experiment wurde mit acht Personen mit jeweils zweimal 45 min Testfahrt durchgeführt.
Ergebnisse: Der komplette Datensatz besteht aus 150.000 Signalwerten, welche zu ca. 7000 Sequenzen zusammengefasst werden. Durch die Anwendung der Qualitätsmetrik bleiben 4370 Sequenzen für das Training übrig. Bei invaliden Sequenzen aufgrund von EEG-Artefakten gibt es deutliche Unterschiede. Im „Wach“ Zustand werden dreimal so viele Sequenzen verworfen als im „Müde“ Zustand. Insgesamt werden bei wachen Probanden im Schnitt ca. 50 % der Sequenzen verworfen, bei Müden lediglich 25 %. Im Durchschnitt erreicht das System eine Erkennungsrate von 73 % für beide Zustände. Vergleicht man nun das Verhältnis von „Wach“ und „Müde“ und lässt „Leichte Müdigkeit“ außen vor, liegen die Ergebnisse bei über 90 %.
Schlussfolgerungen: Die Ergebnisse zeigen, dass die Aufmerksamkeit während des Experiments abnimmt bzw. die Müdigkeit zunimmt. Dies verdeutlichen zum einen subjektive und objektive Beobachtungen von Müdigkeitsanzeichen. Zum anderen lassen sich messbare und klassifizierbare Unterschiede im EEG Signal nachweisen. Die als Merkmale eingesetzten Theta-Wellen zeigten eine niedrigere Amplitude gegen Ende des Experiments. Die Erweiterung der binären Klassifizierung führt zu einer weiteren Stabilisierung der Ergebnisse. Artefaktkorrektur und Qualitätsmetriken steigern die Güte der Daten weiter. Die entwickelte Anwendung zur Müdigkeitserkennung ermittelt messbare Zeichen von Müdigkeit und kann eine gute Entscheidung über die Fahrtauglichkeit treffen.
The investigation of stress requires to distinguish between stress caused by physical activity and stress that is caused by psychosocial factors. The behaviour of the heart in response to stress and physical activity is very similar in case the set of monitored parameters is reduced to one. Currently, the differentiation remains difficult and methods which only use the heart rate are not able to differentiate between stress and physical activity, without using additional sensor data input. The approach focusses on methods which generate signals providing characteristics that are useful for detecting stress, physical activity, no activity and relaxation.
Autismus-Spektrum-Störungen (ASD) bei Kindern werden häufig zu spät diagnostiziert und die Begleitung der chronischen Krankheit gestaltet sich schwierig. Der vorgestellte Ansatz erlaubt die Behandlung der Kinder in dem bekannten häuslichen Umfeld und versucht die Beziehungen zwischen Schlaf und Verhalten herauszuarbeiten. Die gewonnenen Erkenntnisse sollen die Lebensqualität der Patienten verbessern und den Eltern Hilfestellung geben. Die notwendige infrastrukturelle Unterstützung wird durch medizinisches Fachpersonal geleistet, das auf einen web-basierten Service zurückgreifen kann, der sämtliche Prozesse (Diagnostik, Datenerfassung, -aufzeichnung und Training etc.) begleitet. Die anonymisierten Daten werden in einem Diagnosesystem zentral abgelegt und können so für zukünftige Behandlungsstrategien nutzbar sein. Die umfassende Lösung setzt auf zentrale Elemente von Smart-Homes und AAL auf.
Fatigue and drowsiness are responsible for a significant percentage of road traffic accidents. There are several approaches to monitor the driver's drowsiness, ranging from the driver's steering behavior to the analysis of the driver, e.g. eye tracking, blinking, yawning, or electrocardiogram (ECG). This paper describes the development of a low-cost ECG sensor to derive heart rate variability (HRV) data for drowsiness detection. The work includes hardware and software design. The hardware was implemented on a printed circuit board (PCB) designed so that the board can be used as an extension shield for an Arduino. The PCB contains a double, inverted ECG channel including low-pass filtering and provides two analog outputs to the Arduino, which combines them and performs the analog-to-digital conversion. The digital ECG signal is transferred to an NVidia embedded PC where the processing takes place, including QRS-complex, heart rate, and HRV detection as well as visualization features. The resulting compact sensor provides good results in the extraction of the main ECG parameters. The sensor is being used in a larger frame, where facial-recognition-based drowsiness detection is combined with ECG-based detection to improve the recognition rate under unfavorable light or occlusion conditions.